
   

 
 

 
 
March 31, 2023 
 

American Conference of Governmental Industrial Hygienists (ACGIH) 
1330 Kemper Meadow Drive 
Cincinnati, Ohio 45240 
Attention: Threshold Limit Values for Chemical Substances Committee  
 

Re: Submission to the ACGIH TLV® and BEI® Committee 
 

The Occupational Health Clinics for Ontario Workers Inc. (OHCOW) is a not-for-profit 
labour governed worker-based network with a team of dedicated health professionals 
committed to promoting the highest degree of physical, mental and social well-being for 
workers and their communities.   We strive to accomplish this through the identification of 
workplace factors which are detrimental to the health and well-being of workers; by 
empowering workplace parties to make positive occupational health changes in their 
workplaces.  Our clients include workers, joint health and safety committees or 
representatives, unions, employers, health professionals, community groups, legal clinics, 
students, and members of the public. 
 

At seven clinics in Ontario, Canada, an interdisciplinary team of client service coordinators, 
occupational health nurses, occupational hygienists, ergonomists, and contract physicians 
offer clinical and prevention services for both individual patient and larger cluster 
investigations providing an objective, evidence-based opinion on whether an illness or 
injury may be work-related, promote awareness of health safety issues, evaluate 
occupational exposures, and develop prevention strategies.  OHCOW’s unique experience, 
and vulnerable worker lens, provide a unique perspective on a full circle occupational 
illness/disease prevention approach (primary, secondary and tertiary) and as such, 
continue to provide leadership to Ontario’s Occupational Illness Prevention System Focus.  
 

Please find attached our separate submissions following your guidelines for: Aluminum, 
Diesel Exhaust, Lead, Nickel and nickel compounds not including nickel carbonyl, Stoddard 
solvent, and Welding Fumes. The submissions for Diesel Exhaust, Nickel and nickel 
compounds, and Welding Fumes are updates from our 2022 submissions. Lead is a BEI® 
only, updating our 2022 submission. 
 

Thank you for the opportunity on behalf of our team.   
 

Sincerely, 
  
 
Krista Thompson, MHSc, ROH, CRSP 
Occupational Hygienist, OHCOW 
kthompson@ohcow.on.ca  

Eastern Region - Ottawa Clinic 

1545 Carling Avenue, Suite 110 
Ottawa, ON K1Z 8P9 
Tel: (613) 725-6999 
Fax: (613) 725-1719 
ottawa@ohcow.on.ca 
www.ohcow.on.ca 

http://www.ohcow.on.ca/
mailto:kthompson@ohcow.on.ca
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  Toronto, ON  M3C 3R6    

  Canada      

 

Telephone:   416-510-8713    Email:   Koconnell@ohcow.on.ca   

 

Executive Summary (limit 250 words) 

 

There is now definitive evidence from more recent studies since the ACGIH 2007 feasibility 

assessment. Research carried out on the McIntyre project and others linking exposure to 

aluminum and aluminum compounds with neurological orders merits a review by the ACGIH 

and assigning a BEI®. 

Literature for McIntyre Powder-related publications have demonstrated that inhaled aluminum 

can translocate into the bones and quantified by neutron activation analysis. The method 

provided by Bickley et al. (2022) demonstrated that in vivo neutron activation analysis could 

measure bone aluminum levels in 15 miners who had been exposed to McIntyre Powder over 40 

years prior. Demers et al. 2020 noted that when looking at the rate of Parkinson’s disease and 

Parkinsonism, there was a 27% and 14% increase in incidence rates of both, when compared to 

the general population. 

This information reaffirms that there may be a risk from neurodegenerative disease, which 

provides the impetus for the ACGIH® to establish a BEI® for aluminum. Specific action: 

proposing a BEI® for aluminum in urine of 50 µg/g creatinine based on the work of Klotz and 

Hartwig (2020). 

mailto:Koconnell@ohcow.on.ca
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Chemical Substance: Aluminum 

Contact Name: Krista Thompson (OHCOW) 

Citable Material Attached (include Permission to Use if necessary): see below 

Specific Action Requested 

 

1. We recommend a BEI® for Al in urine of 50 µg/g creatinine, based on the work of Klotz and Hartwig 

(2020) and the cited McIntyre powder research.  

2. We recommend the TLV®-TWA be lowered. 

 

Rationale 

Genetic, neuropathological, and biochemical investigations have revealed meaningful relationships between 

aluminum (Al) exposure and neurotoxic and hematotoxic damage (Turkez et al. 2022). 

Occupational exposure to aluminum occurs mainly via inhalation of fumes containing aluminum and aluminum 

compounds, such as during welding processes. Inhaled aluminum can accumulate in the bones, which has a 

relatively long half-life of 10-20 years. A similar half-life is noted for accumulation in the brain. Lung and bone 

burdens explain the long serum and urine half-lives which may be more than one year such as for welders after 

cessation of exposure. This is why setting a BEI® is important: it should drive exposure reduction and thus 

prevent accumulation and any further increase in body burden. 

The main target organs are the central nervous system and lungs. Various in vivo and in vitro studies show that 

aluminum can influence more than 200 biologically important reactions in the nervous system (Klotz et al. 

2019). Inhalation of aluminum can also cause aluminosis. Other toxic effects (e.g. on bones and blood) as 

well developmental toxicity are described in the MAK Value Documentation. In humans, aluminum has been 

reported to have pathogenic effects on the lungs. Aluminosis occurs at aluminum concentrations of more than 

200 µg/L urine.  

Firstly, even though this submission addresses a proposed BEI® for aluminum, we should highlight that the 

current TLV®-TWA for aluminum metal and insoluble compounds of 1 mg/m3 (respirable) is set too high. 

There may be many situations where a significant portion of respirable particulate matter is sub-micron (< 1 µm) 

or even ultrafine (< 0.1 µm), necessitating a lower TLV®-TWA.  

It is now known that ultrafine airborne aluminum particulate matter can enter and be deposited in the brain. 

Aluminum could enter the brain from systemic circulation or the site of absorption.  

Aluminum fluxes into brain across the blood-brain barrier (BBB), the choroid plexuses and the nasal cavity. Al 

is considered unsafe to humans after the discovery of increased levels of Al in brain tissues of patients with 

encephalopathy, having been exposed to Al accumulation through dialysis (Igbokwe et al. 2019). 

Redistribution of aluminum out of the brain is slow. Aluminum can be deposited in the brain for a long time 

(Wang 2018). Aluminum entering the brain across the blood-brain barrier has been defined to be the primary 

route of brain aluminum uptake. A recent study to examine 100 of the most cited articles on the toxicology of 

aluminum related to the current state of knowledge has been provided by de Lima et al. 2022.  

Publications between 1945 and 2022 found Alzheimer's disease (AD). Aluminum and neurotoxicity were found 

as the most frequent keywords. The articles most cited in world literature suggested that aluminum exposure 

may be associated with Alzheimer's disease, Parkinson's disease (PD) and parkinsonism, dialysis 
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encephalopathy, amyotrophic lateral sclerosis (ALS), neurodegeneration changes, cognitive impairment, bone 

damage, oxidative alterations, and cytotoxicity.   

As noted, based on the above we recommend that the ACGIH places aluminum on the under-study list in order 

to establish a much lower TLV®-TWA based on the most up to date evidence. Especially as the current TLV® 

documentation (2007) is outdated. 

Martin et al. (2022) notes that serum aluminum is the main biomarker of toxicity. For cases of continuous 

exposure, urine testing is recommended. The solubility of aluminum compounds determines its toxicokinetic 

health risks. For miners forced to inhale McIntyre power, aluminum hydroxide dominates the aluminum 

speciation (Zarnke et al. 2019). Although aluminum hydroxide is insoluble in water, the PH in the 

gastrointestinal tract will increase the bioavailability of aluminum. In addition, it needs to be considered that the 

particle size and the surface area influences the bioavailability of substances of low solubility (ECHA nd.).  

A study of smelter workers revealed that 22 and 95 µg/g of urinary Al was associated with exposure to 1 mg/m³ 

total Al and 1 mg/m³ soluble Al, respectively. 

Increases in the levels of Al in the urine of workers show that exposure by inhalation does lead to transfer to the 

systemic circulation, most likely with a significant contribution from uptake in the gastrointestinal tract 

following “mucociliary clearance” (ECHA nd.). 

Urine is the measurement of choice as it has a higher sensitivity. In workers exposed to aluminum, urine 

concentrations 1 or 2 days after exposure is a reliable indicator of aluminum concentrations in the body. 

The ACGIH® feasibility assessment (2007) notes: 

The Committee has concluded that since there is not currently a pattern of 

neurobehavioral testing results unambiguously related either to air exposure at the 

TLV or to urinary aluminum excretion levels, it is not feasible at this time to 

establish a urinary Aluminum BEI based on neurobehavioral health effects. 

There are papers that can be used to guide the establishment of a BEI® that are complementary to Laureys and 

Hoet 2001. In addition, the reference list in the feasibility assessment is well short of that provided in Lauwerys 

and Hoet 2001, third edition. 

In addition, a series of papers related to former miners exposure to McIntyre Powder, exposure, characterization 

and levels of aluminum detected in the lungs from autopsies of former miners, and aluminum in bone detected 

in retired miners some 40 years after exposure and health effects including neurodegenerative disease provides 

useful study source material. 

From the study by Verma 2019, the grand mean level of aluminum was found to be 476.4 µg/g of dry lung 

tissue, which is similar in the range reported for occupationally exposed groups. As there were elevated levels of 

aluminum in bone reported by Bickley et al. 2022, this indicates that translocation did occur into the bones; 

which may also indicate a strong likelihood for translocation of aluminum particles into brain tissue. 

Regarding aluminum in bone, the Bickley et al. 2022 study was able to demonstrate that aluminum can be 

measured in the bones of retired miners exposed to McIntyre Powder who had been exposed over 40 years ago 

using neutron activation analysis. This technique could potentially be applied in further cross-sectional studies 

of health effects in this group (or similar groups) of workers. The increased bone aluminum was detectable in 
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about half the subjects measured even 40 years after the exposure to McIntyre Powder had ceased. With 

adjustments for biological removal of aluminum from bone over time, the maximum concentration detected is in 

line with values reported from a previous study measuring aluminum levels in dialysis patients, suggesting 

similar initial exposure levels. 

A recent cohort study by Demers et al. 2020, investigated the association of McIntyre powder exposure with 

neurodegenerative diseases. Data were pulled from the Mining Master File (MMF), an electronic database 

recording medical records and work history from 90,000 miners across Ontario. During the period of McIntyre 

powder use in Ontario, 28% of all underground miners were exposed, with the peak being in 1961. 

Of these exposed miners, 90% were exposed after 1956. When looking at the rate of PD and parkinsonism, there 

was a 27% and 14% increase in incidence rates of PD and parkinsonism compared to the general population.  

Recently, a meta-analysis of eight epidemiological studies found that chronic aluminum exposure was 

significantly associated with increased risk of AD (OR = 1.71, 95% CI: 1.35–2.18) (Wang et al. 2016). Krewski 

et al. (2007) also indicated that approximately 60% of the body burden is in the bone. Aluminum in bone has a 

long half-life (10-20 years) (Priest 2004) and is slowly released to the blood (Poddalgoda et al. 2021). 

The results from this study combined with results of a study by Zarnke et al. (2019), where as described, miners 

inhaled aluminum nanoparticles mostly in the form of aluminum hydroxide, are useful when trying to 

understand both the bioavailability and body burden of aluminum. 

Further analysis of this data set by Priest (2004), including extrapolating, and estimating past urinary aluminum 

levels based on back calculated correlations between exposure to McIntyre Powder may reveal the urinary 

aluminum levels at this time using formulae by Laureys and Hoet 2001. 

The German Federal Environmental Agency (Umweltbundesamt) established provisional reference values for 

the general population using concentrations of aluminum in both urine and serum, which amount to <15 μg/L 

and <5 μg/L, respectively (Klotz et al., 2017).  

Poddagolda et al. 2021, reported that for oral exposure to aluminum, including a Minimal Risk Level (MRL) by 

the Agency for Toxic Substances and Disease Registry (ATSDR), a Provincial Tolerable Weekly Intake (PTWI) 

by the Joint FAO/WHO Expert Committee on Food Additives (JECFA) and a Tolerable Weekly Intake (TWI) 

by the European Food Safety Authority (EFSA), which provides a useful reference. 

An MRL of 137 µg/L has been provided for aluminum in urine. An MRL is defined as an estimate of daily 

human exposure to a substance that is likely to be without an appreciable risk of adverse effects 

(noncarcinogenic) over a specified duration of exposure. MRLs are derived when reliable and sufficient data 

exist to identify the target organ(s) of effect or the most sensitive health effect(s) for a specific duration within a 

given route of exposure (ASTDR 2017). 

The German DFG in their evaluation of a biological reference value (BAR), which represents the background 

exposure of persons of working age occupationally not exposed to aluminum, have established a level of 15 

µg/g creatinine (Sampling time: for long-term exposures: at the end of the shift after several shifts). A biological 

reference value (BAR) representing the background exposure of persons of working age occupationally not 

exposed to aluminum is presented; this value is oriented towards the 95th percentile (DFG 2019). This value is 

50 µg aluminum/g creatinine (µg/l: 1.2 µg Al/l = 1 µg Al/g creatinine). 
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In 2017, a BAT value for aluminum of 50 µg/g creatinine was established, which is based on effects described in 

the addendum of 2018 (translated 2019, Klotz et al. 2019). As critical end point neurotoxicity was considered 

(DFG 2019). 

BAT values (“Biologische Arbeitsstoff‐Toleranz-Werte”: biological tolerance values) and BLW 

(“Biologische Leit‐Werte”) to enable the evaluation of the risk to an individual’s health which results 

from exposure to a substance at the workplace.  

By definition, BAT values can be established only for such substances that can be taken up by the body in 

substantial quantities via the lungs and/or other body surfaces (skin, gastrointestinal tract) during occupational 

exposure. Another prerequisite for the establishment of a BAT value is that sufficient occupational‐medical and 

toxicological data are available for the substance and that these data are supported by observations in humans. 

The German DFG (2021) BAT value for aluminum in urine is 50 µg/g creatinine equivalent to 60 µg/L 

considers the critical point for neurotoxicity. Therefore, we recommend that the ACGIH considers the literature 

from the McIntyre Powder project, and information provided by Klotz and Hartwig (2020) when considering a 

BEI® for aluminum. 

Aluminum in urine as a biomarker for pre-clinical neurological effects 

Epidemiological studies have been conducted to investigate neurotoxic effects by identifying the two major 

functional areas involved in motor and cognitive functions using different test methods (Klotz et al. 2019). 

Klotz et al. 2019 notes that the most sensitive endpoint for the derivation of a health-based BAT value for 

aluminum is the occurrence of preclinical neurotoxic effects after exposure.  Studies indicate that there is an 

association between aluminum in urine or serum and central nervous system effects. The direct correlation 

between CNS and aluminum in urine has been used as a basis for deriving a limit of urinary aluminum of 3 

nmol/L, 2.3 µmol/g creatinine, or 62 µg/g creatinine. An updated German BAT value is in fact based on a direct 

correlation between the correlation of subclinical neurological effects in aluminum exposed workers and urinary 

aluminum levels. We believe this is a better approach to assign a BEI® value than applying a correlation based 

on personal exposure that is seemingly too high. The updated BAT value is 50 µg/g creatinine with a sampling 

time after several shifts or at the end of the work week. 

Refer to Figure 1 (next page). 
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Figure 1. Adapted from Klotz et al. (2019), the above figure combines information from nine 

studies showing cognitive effect sizes relative to the median of urinary aluminum concentrations. 

An effect size below zero demonstrates an adverse motor or cognitive effect. The studies show a 

trend between poorer cognitive performance with increasing urine aluminum concentrations. 

According to Klotz et al. 2019, “cognitive effects > 50 µg/g creatinine go beyond the measure of 

“negligible effect”. 

This level is also below the tolerable weekly intake (TWI) from derivation of Biomonitoring Equivalents for 

aluminum for the interpretation of population-level biomonitoring data reported by Poddalgoda et al. 2021, at a 

level of 57 µg / g creatinine. 

The literature indicates that urine aluminum concentrations below 55 μg/g of creatinine are safe for humans. 

While the level of urinary aluminum 4 to 6 μmol/L (108 to 162 μg/L) represents a threshold for neurological 

side effects, urine level of 100 μg per liter is known as the critical concentration and the development of 

neurological complications (Amiri et al. 2022).  

Aluminum reduces the activity of acetylcholinesterase. In addition, exposure to aluminum significantly reduces 

the activity of gamma-aminolevulinic acid dehydratase (ALAD) in blood and gamma-aminolevulinic acid 

synthesis (ALAS) in brain (Amiri et al. 2022) – this warrants further investigation and paves the way for future 

research on biological monitoring of effects. 

Conclusions 

We recommend consideration proposing a BEI® for Al in urine of 50 µg/g creatinine based on the work of 

Klotz and Hartwig (2020) and the McIntyre powder research. 
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Executive Summary (limit 250 words) 

 

Elemental carbon (EC) is used as an indicator for diesel exhaust by most jurisdictions. The 

European Union has decided on an occupational exposure limit of 0.05 mg/m3 EC, in effect from 

2023, which is the same limit in Germany and Sweden. The Australian Institute of Occupational 

Hygiene recommends a limit of 0.1 mg/m3 EC, though Cherrie 2019 noted that a limit of 0.1 

mg/m3 “would do little to reduce the predicted death toll from occupational exposure to diesel 

exhaust particulate.” 

 

Long et al (2022) studied controlled human exposure to diesel exhaust from traffic air pollution 

and reported findings including a controlled human experiment which included 40 volunteers, 

who had an acute exposure of PM2.5 at 25 µg/m3 (0.025 mg/m3). At this level, adverse effects on 

endothelial function, vascular walls, and heart rate variability even at 24 h post-exposure were 

reported. In addition, the study by Chen et al (2017), between 2001 and 2012, in Ontario, 

Canada, found an adjusted incident dementia hazard ratio (HR) of 1.07 for people living less 

than 50 m from a major traffic road (95% CI 1.06–1.08). 

 

Based on shorter term acute exposures, we recommend a TLV®-TWA for EC of 10 μg/m3 EC 

with (L) notation as an evidence-based limit for all workplaces.  

 

As diesel exhaust is in the “under study” list, we provide the following recommendation: a 

TLV®-TWA of 60 pg/m3 for 1-nitropyrene (1-NP) especially where EC is at relatively low 

levels of exposure / approaching the limit of quantitation using NIOSH 5040.  

mailto:Koconnell@ohcow.on.ca
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Chemical Substance: Diesel Exhaust 

Contact Name: Krista Thompson (OHCOW) 

Citable Material Attached (include Permission to Use if necessary): see below 

Specific Action Requested 

 

1. We recommend a TLV®-TWA for diesel exhaust measured as elemental carbon (EC) at 10 µg/m3 or 

0.01 mg/m3 with the (L) notation, an abbreviation of “exposure to all routes should be carefully 

controlled to level as low as possible.” This can be measured following NIOSH Method 5040 (sub-

micron EC) with improvements to sampling and analysis provided in Noll et al 2020 to improve 

sensitivity / detection. This will ensure that the Limit of Quantitation (LOQ) is no more than 10% of the 

proposed TLV®-TWA. 

2. We recommend a second complimentary TLV®-TWA for diesel exhaust based on exposure to 1-

nitropyrene, using the correlation between EC and 1-NP. Riley et al (2018) note an increase at about ~ 6 

pg/m3 for 1-NP per 1 µg/m3 increase in EC which equates to 60 pg/m3 of 1-NP in total corresponding to 

a proposed ACGIH TLV®-TWA of 10 µg/m3 EC. 

 

Rationale 

 

1.0 Introduction 

Chronic inhalation studies on rats with diesel exhaust from “new diesel engine technology” (Mauderly 2010; 

HEI, 2015b) with the highest concentration of approximately 10 μg/m3 diesel soot particles, provided no 

evidence of pulmonary carcinogenicity. For older engines, Ge et al (2020) has reaffirmed findings from previous 

meta-analysis. Excess Lifetime Risks (ELR) associated with 45 years of EC exposure at 50, 20, and 1 µg/m3 

were 3.0%, 0.99%, and 0.04%.  

Pooled studies reported that exposure to diesel exhaust (measured as EC) at 1, 10, and 25 mg /m3 would result in 

17, 200, and 689 extra lung cancer deaths per 10 000, respectively, by the age of 80 years (Taxell and Santonen 

2017). They note that reduction of workplace EC levels to background environmental levels will further reduce 

lung cancer ELR in exposed workers.  

According to the German Committee for Hazardous Substances - AGS Management - BAuA (2017): “the 

critical effect is particle-related chronic inflammation in the lungs”. If this chronic inflammation is avoided, it is 

assumed that there is no additional cancer risk from diesel soot. A threshold effect (chronic particle-related 

inflammation) is considered the most probable for lung tumor development and an AGW for diesel soot, as EC, 

has been derived. For the chronic particle-related inflammatory effect endpoint, Mauderly et al (1987), derived 

an OEL of 50 μg EC/m³ for rats.  

As the soot core is believed to be the cause of the chronic effect of diesel engine emissions; the derivation is 

based on the EC. It should be noted that this assessment is based on “chronic effects” rather than “acute effects”. 

The AGS 2017 derived particle-related inflammatory effects are based on chronic exposure. Acute exposures 

are not used to derive the limit value.  

We believe that the ACGIH TLV®-TWA should be based on short term (acute) health effects. Chronic health 

effects will be compounded from acute health effects. Chronic inhalation studies in rats, derived an acceptance 

risk of 4:100,000 from a Human Equivalent Concentration (HEC) of 24 μg/m3 (AGS 2017). 
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For shorter term exposure resulting in health effects, a study by Anderson et al (2019) reported adverse health 

effects for 29 healthy volunteers over a period of 3 days exposed to diesel exhaust while sitting as passengers in 

diesel-powered trains. The effects noted in this study included reduced lung function, altered heart rate 

variability, and increased levels of DNA strand breaks as compared with those exposed to electric trains. The 

exposure average for black carbon (BC) was 10.3 µg/ m3 over 3 days of exposure.  

1-NP as a surrogate / replacement for EC, which may provide a complimentary exposure metric, and which may 

be complimentary (tracked) from biological monitoring for 1-AP in urine.  

2.0 Measures for exposure assessment  

2.1 Ultrafine particles 

Short-term exposures to ambient ultrafine particles (UFPs) (<0.1 μm) have been associated with acute changes 

in physiological measures of cardiorespiratory health (Wellek & Blettner 2012, Evans et al 2014). Regarding 

women of reproductive capacity, Lavigne et al 2020 (p. 15) evaluated a total of 1,066 childhood cancers and 

found that first trimester exposure to UFPs of 10,000/cm3 resulted in a Hazard Ratio (HR) of 1.13, 95% CI: 

1.03–1.22. In the last five years, substantial progress has been made to assess personal exposure to ultrafine 

particles. Particle number concentration is dominated by the smallest particles (<200 nm), those which 

contribute nearly negligibly to particle mass concentration (Koehler and Peters, 2015). As diesel particulate 

matter (DPM) is predominantly < 1µm in diameter then measuring particle number may be a better surrogate for 

exposure and health effects compared to EC (NIOSH 5040) which is mass based. 

2.2 Elemental carbon 

For a mass-based measure, EC is a better measure of exposure and less prone to interferences than total carbon 

(TC), therefore the limit should be set as EC, not total carbon. According to Debia et al (2017): “the variability 

observed in the TCR/ECR ratio shows that interferences from non-diesel related organic carbon can skew the 

interpretation of results when relying only on Total Carbon data”. 

The level that can reliably be measured, is commonly referred to as the limit of quantitation (LOQ), minimum 

reported value (MRV), or limit of reporting (LoR). According to Birch (2016) with a 960-L air (full shift) 

sample, an LOD translates to an air concentration of about 2 μg/m3, which is the LOQ. Considering the accuracy 

of NIOSH 5040 for EC, which is ± 16.7% at 23 µg/m3, and that the LOQ is ~ 2 µg/m3 NIOSH (2016), this will 

limit measurement at lower concentrations. NIOSH notes a working range of approximately 6 to 630 µg/m3, 

with an LOQ of ~ 2 µg/m3 for a 960-L air sample.  

This requirement is described in ISO 15202- 35, while BS EN 482:20126 requires that the measuring range of 

the procedure or instrument shall cover the concentration from 0.1 times to 2 times the OEL. As noted, an 

accuracy of NIOSH 5040 of ± 16.7% at 23 µg/m3, with an LOQ of ~ 2 μg/m3 NIOSH (2016), limits the TLV®-

TWA to no less than 20 µg/m3, the same level proposed by the ACGIH in 2001.  

Verpaele (2018) also states that every procedure should operate within the range of 0.1–2 times the occupational 

exposure limit values (OELVs). In the European context, the LOQ should be no more than 0.1 or 10% of the 

limit.  

More recently, Noll et al 2020 reported that when compared with the standard cassette, the new high-sensitivity 

cassette designed by NIOSH improves the limit of detection of NIOSH 5040 by approximately five-times (Noll 

et al 2020). 

2.3 1-nitropyrene (1-NP) 
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1-nitropyrene (1-NP) is the most abundant nitroarene in diesel emissions, and its formation is facilitated by the 

high temperature and excess air supply in the combustion chamber of diesel exhaust, where it is generated by 

the addition of nitrogen oxide or nitrogen dioxide to free pyrene radicals (IARC 2018).  

A study by Riley et al (2018), to evaluate of 1-NP as a surrogate measure for diesel exhaust found high 

correlations between the quantiles of 1-NP and EC exposures. 1-NP may in fact be a better surrogate, especially 

when assessing personal exposure < 20 µg/m3 EC. One potential advantage of 1-NP compared to EC as a 

surrogate measure of diesel exhaust, is the absence of confounding sources of 1-NP in a typical mine 

environment. Nitropyrene is also probably carcinogenic to humans (Group 2A) (IARC 2018).  

A robust linear relationship for each quantile of the task groups for EC and 1-NP is shown by Riley et al 2018 

where 1-NP is predicted to increase ~6 pg /m3 for a 1 µg m3 increase in EC. Therefore, taking the Finnish and 

Occupational Cancer Research Centre (OCRC) recommended limit of 5 µg/m3 (EC) this equates to ~ 30 pg/m3 

1-NP; or applying ~6 pg/m3 per 1 µg/m3 increase in EC, 10 μg/m3 would equate to ~ 60 pg/m3 1-NP. In 

addition, to further understand what an appropriate limit for 1-NP would be, figure 1.1 in IARC 2018 

(monograph 105) can be used for comparison. 

3.0 Levels of exposure 

3.1 Levels of EC exposure in the most highly exposed industry – mining 

In Ontario Canada, a survey representative of 12 mines demonstrated personal exposure results with a geometric 

mean (GM) (n = 118) of 0.03 mg/m3 for underground miner personal samples taken in 2018.  

A year-by-year analysis demonstrated a reduction of about 0.0024 mg/m3 per year, which should translate to 

about 0.0156 mg/m3 in 2024. An international goal set by BHP Billiton (Multi-national mining company) to 

reduce diesel exposures to “as low as technically achievable” has achieved personal exposures to within 0.03 

mg/m3 (EC) for both international coal and metal mines (McDonald R, 2016 MSHA submission). This reaffirms 

that setting a lower TLV®-TWA is a key driver to reducing exposures (Hedges, 2017). This company - in its 

mines in Canada - has also reported substituting electric engines for diesel wherever possible to eliminate all 

diesel exhaust exposure, and further reduce overall diesel exhaust exposure. A recent study of Swedish 

exposures monitored in 2019 found that underground miners had an average geometric mean (GM) EC exposure 

concentration of 7 µg/m3 with a geometric standard deviation (GSD) of 2.7 (Cren et al 2022). 

3.2 Levels of exposure other workplaces 

Plato et al (2020) provides “a historical job-exposure matrix for occupational exposure to diesel exhaust using 

EC as an indicator of exposure”. This Finnish job-exposure matrix (FINJEM) used specific exposure to diesel 

and gasoline exhaust over different time intervals (3–15 years) between 1945 and 2003. Results from this JEM 

representative of the year 2000 demonstrate many exposures to EC within 10 µg/m3 (Plato et al 2020). Couch et 

al (2016) evaluated EC concentrations in US fire stations in 2016 and reports all results for 3 fire stations < 

0.01mg/m3. However, it is likely that with statistical analysis the upper confidence limit (UCL) (95% Lands 

Exact) may exceed 0.01 mg/m3. 

4.0 Health effects 

4.1 Cancer 

The SHEcan project predicted that around 230 000 people will die from lung cancer from workplace exposure to 

diesel exhaust particulate in the EU (Cherrie 2019).  

A move towards a process of continuous improvement rather than just meeting a minimum standard is 

particularly relevant when considering a TLV®-TWA for diesel exhaust (Cherrie et al 2019). 
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To this point, we recognize that a leading mining company prior to 2016 reduced exposure levels to as low as 

reasonably achievable and achieved at least as low as 0.03 mg EC/m3 for international mining operations 

(McDonald R 2016). Notwithstanding, OHCOW acknowledges the OCRC Burden of Occupational Cancer in 

Ontario (2017) proposed OELs that align with the Finnish Institute for Occupational Health, which recommends 

occupational exposure limits of 20 μg/m3 EC for the mining industry and 5 μg/m3 EC for other workplaces.  

A reanalysis of a German Potash Miners cohort, by Möhner et al 2013, supports the notion that a clear 

relationship between diesel exhaust and lung cancer is absent, at least in the range of a cumulative REC 

exposure up to 2.5 mg/m3 -years. They did note that an upper bound for the cumulative exposure of 2.5 mg/m3 - 

years of REC seems to be sufficient to prevent a detectable increase of lung cancer risk. This value corresponds 

to an average annual value of about 50 µg/m3 REC assuming a working life of 45 years.  

In 2017, Dr. Vermeulen provided a presentation through the OCRC in which he concluded that the “acceptable 

risk” and “maximum tolerable risk” levels for diesel exhaust would be below 1 μg/m3 EC. Such limits are below 

current occupational exposure levels, and in some instances even below environmental exposure levels. 

OHCOW acknowledges the policy recommendations in the OCRC report “Burden of Occupational Cancer in 

Ontario OCRC 2017, p.251) to adopt occupational exposure limits of 20 µg/m3 EC for the mining industry and 5 

µg/m3 EC for other workplaces, based on the Finnish Institute for Occupational Health.  

A single limit of 10 µg/m3 across all workplaces provides a practical TLV®-TWA, although it may take 

industry some time to achieve this level if using older diesel engines. The technology is, however, available to 

currently achieve exposures at this level. 

A TLV®-TWA of 10 µg /m3 will also provide impetus for continuous improvement and target those workplaces 

with greatest risk.  

Taxwell and Santonen (2016) note that on a log-linear meta-regression model, 45 years of occupational 

exposure to diesel exhaust at 1, 10 and 25 µg EC/m3 was estimated to result in 17, 200 and 689 extra lung 

cancer deaths per 10 000 individuals, respectively, by the age of 80 years.  

In addition, DECOS 2019 notes 4 extra death cases of lung cancer per 1,000 (prohibition risk level), for 40 years 

of occupational exposure, equals to 1.03 µg REC/m3. Thus a health based TLV®-TWA would have to be within 

1 µg/m3 EC, which is currently not feasible. 

Based on the available data, the critical health effects of diesel exhaust are pulmonary inflammation and lung 

cancer (Taxwell and Santonen, 2017). As noted, setting a health based TLV® for cancer is currently not 

feasible, if feasibility is to be considered. Therefore, the ACGIH terminology for an (L) should therefore be 

provided along with the TLV®, “exposure by all routes should be carefully controlled to levels as low as 

possible”.  

The AGS also provided qualification that in animal experiments lung tumours were observed after exposure to 

particulate matter is explained by inflammation (chronic irritation). Thus, the AGS considered irritation and lung 

inflammation the critical effect against which workers should be protected. According to DECOS (2019), 0.1 

mg/m3 diesel exhaust particles approximate to 0.075mg/m3 EC, although this is questionable and may not apply 

to all diesel engines. This is empirical, and the ratio will not be constant with a wide variation. Nasal, throat and 

eye irritation are described in experiments with healthy human volunteers after a single exposure to inhaled 

diesel exhaust (concentrations of exhaust varying from 108 to 300 µg diesel exhaust particles/m3 (≈ 81 to 225 

µg EC/m3). 
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In addition, in healthy human volunteers, single exposure to diesel exhaust for two hours induced pulmonary 

effects (e.g., lung inflammation, lowered lung function). These effects were observed at exposure levels of the 

exhaust varying from 100 to 300 µg diesel exhaust particles/m3 (≈ 75 to 225 µg EC/m3).  

The AGS noted that experiments with humans on single exposure to diesel exhaust were not considered useful, 

since the increase in inflammatory parameters were related with the NO2 in the exhaust. The AGS also gives 

suggestions for risk-based limit values (e.g., acceptable (4:100,000) and tolerable risks (4:1,000)) for the 

carcinogenic effects. Based on the animal experiments, it suggests an acceptable risk concentration level of 20 

µg EC/m3 (24 µg EC /m3 HEC equivalent) (TRGS 900, table 2).  

The US EPA estimates that the ambient outdoor level of diesel exhaust (<10 μm particle size measured by EC) 

would be up to 1-3 μg/m3. In analysis of exposures in the trucking industry NIOSH estimated that a 13 μg/m3 

working life exposure was associated with a 1-2% (10-20/1000) excess risk of lung cancer above the 5% 

background lung cancer risk.  

The EPA has developed a reference concentration (RfC) for diesel exhaust of 5 μg/m3 of diesel exhaust (roughly 

equivalent to 3.1-6.6 μg/m3 of diesel exhaust as determined by EC) which was derived based on “dose-response 

data on inflammatory and histopathological changes” in the lung from rat inhalation studies.  

Because the mechanisms of lung cancer in humans are likely to be multifactorial, including direct genotoxicity, 

diesel exhaust particle-induced oxidative stress and pulmonary inflammation, Taxell and Santonen 2017, 

reaffirmed that it is currently not possible to identify a threshold level for carcinogenicity.  

In addition, when the pulmonary inflammatory response seen in controlled human studies after 1–2 h exposure 

at 100 µg diesel exhaust particulate/m3 (approximately 75 µg EC/m3) suggests the OEL should be well below 

this level. There is sparse data available to link high exposure to new technology diesel exhaust with pulmonary 

inflammatory effects, without indicating genotoxicity or carcinogenicity (Bemis et al 2015, Hallberg et al 2015). 

The Dutch Expert Committee on Occupational Safety (DECOS), a committee of the Health Council of the 

Netherlands, derives health-based calculated occupational cancer risk values (HBC-OCRVs) associated with 

excess cancer risk levels of 4 per 1,000 and 4 per 100,000 as a result of working life exposure.  

The Committee estimates that the concentration of EC from diesel exhaust in the air, which corresponds to an 

excess cancer risk level of:  

• 4 deaths per 1,000 for 40 years of occupational exposure, equals to 1.03 μg EC/m3, and 

• 4 deaths per 100,000 for 40 years of occupational exposure, equals to 0.011 μg EC/ m3. 

Since the estimated HBC-OCRV of 1.03 μg EC/m3 falls in the range of the ambient urban air levels (0.4–2.0 μg 

EC/m3), and the HBC-OCRV of 0.011 μg EC/m3 is even below these levels, DECOS recommends that workers 

should not be exposed to diesel exhaust at levels higher than the background levels.  

For the public, Health Canada (2016) in its “Human Health Risk Assessment” for Diesel Exhaust noted that 

based on traditional risk assessment methodologies, and with regard to “general population exposures”, a short-

term exposure guidance value of 10 µg/m³, and a chronic exposure guidance value of 5 µg/m³, have been 

derived based on diesel particulate matter (DPM) to protect against adverse effects on the respiratory system. 

4.2 Health effects from chronic exposure for non-cancer health effects 

In 2017, the federal Ausschuss für Gefahrstoffe (AGS) derived an occupational exposure limit for diesel exhaust 

of 50 µg EC/m3 (8-h TWA). This is based on the endpoint of chronic particle-induced inflammatory action, the 

study by Mauderly et al (1987) derived from rats an AGW of 50 µg EC/m³. The AGS didn’t incorporate short 

term exposure in their assessment. 



 

Diesel Exhaust   Page of 15 of 65 
 

4.3 Health effects from short-term exposure for non-cancer health effects 

For lung inflammatory changes diesel exhaust particles have been assessed using human inhalation studies (1 – 

2hr), the inflammatory changes in bronchiolar lavage (BAL), bronchial wash (BW) and increased airway 

resistance from exposure to (older technology) diesel exhaust.  

Taxwell and Santonen (2017) from human inhalation studies (1–2 h) have reported inflammatory changes in 

BAL/BW, and increased airway resistance at the lowest observable adverse effect level of 0.1 mg/m3 of diesel 

exhaust particulate (DEP) (DECOS 2019) equivalent to about 0.05 mg/m3 EC assuming a 50% conversion.  

A study by Anderson et al (2019) demonstrated health effects for 29 healthy volunteers exposed to diesel 

exhaust while sitting as passengers in diesel-powered trains. Exposure to diesel exhaust inside diesel-powered 

trains for just 3 days was associated with reduced lung function and systemic effects in terms of altered heart 

rate variability and increased levels of DNA strand breaks compared with electric trains as previously discussed. 

The exposure average for black carbon (BC) was 10.3 µg/ m3 the average for the electric train was 1.8 µg/m3. In 

a study by Jeong et al (2017), side by side monitoring was carried out in different sections of a diesel-powered 

passenger train. At the front of the train directly behind the diesel-powered engine, the average concentration 

was shown to be 22 µg/m3. This is a location where the train balance crew are located. The same monitoring for 

a train in “push mode” and not “pull mode” resulted in a marked reduction of BC to well within 10 µg/m3; 

suggesting that if a TLV®-TWA were assigned as 10 µg/m3 an impetus for continuous improvement would 

drive further reductions. 

4.4 Health effects and a dose response relationship from traffic pollution (ambient air studies) 

Exposure to traffic pollution has been found to increase the incidence of several cardiopulmonary diseases, as 

well as type II diabetes, and is related to neurotoxicity as well as cancers (HEI 2013). 

The most prominent effects caused by air pollution in both humans and animals are oxidative stress and neuro-

inflammation. Studies in mice acutely exposed to DE (250-300 μg/m3 for six hours) have shown microglia 

activation, increased lipid peroxidation, and neuro-inflammation in various brain regions, particularly the 

hippocampus and the olfactory bulb (Costa et al 2017). 

In a recent human study (Gawryluk et al 2023) it was shown that brief diesel exhaust exposure of 120 minutes 

acutely impairs functional brain connectivity at a nominal concentration of 300 µg of particulate matter of 2.5 

microns or less (PM2.5)/m3. During exposure, participants cycled on a stationary bicycle at light effort (that 

which yields ventilation at 15 L/min/m2) for 15 min, during the first quarter of each hour, to maintain a 

representative level of activity. 

An extensive review of the literature by Long and Carlsten (2022) included 104 publications of controlled 

human exposure studies to diesel exhaust along with traffic pollution. Health effects noted included 

cardiovascular system (e.g., vasomotor dysfunction, inhibition of fibrinolysis, and impaired cardiac function) 

and respiratory system (e.g., airway inflammation, increased airway responsiveness, and clinical symptoms of 

asthma). From this review the lowest exposure examined, a nominal concentration of diesel exhaust PM2.5 at 25 

µg/m3, resulted in acute diesel exhaust exposure associated with adverse effects on endothelial function, 

vascular walls, and heart rate variability even at 24 h post-exposure. Short-term exposure to diesel exhaust 

fumes has a prolonged adverse impact on endothelial function and vascular wall properties, along with impaired 

heart rate variability, abnormal fibrinolytic activity and increased markers of inflammation. An increased 

cardiovascular risk has been shown for 40 healthy subjects in a controlled human exposure experiment, when 

exposed to diesel exhaust fumes at an average exposure to PM2.5 at a concentration of 25 µg/m3 (Tousoulis et al 

2020). 
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DE was also associated with increased inflammatory markers and abnormal fibrinolytic markers. A study 

conducted in the US reported that a 10 μg/m3 increase in PM2.5 increased cardiovascular mortality risk by 8–

18% (Long et al 2022A).  

Therefore, this justifies setting an ACGIH TLV®-TWA of no more than 10 µg/m3 measured as EC based on the 

lowest observable adverse effects level (LOAEL) from short term health effects from both controlled human and 

traffic related exposure studies. 

5.0 Conclusion 

The review by Long et al 2022, demonstrated that diesel exhaust (PM2.5) at 25 µg/m3 from acute diesel exhaust 

exposure in a controlled exposure experiment with 40 healthy individuals was associated with adverse effects on 

endothelial function, vascular walls, and heart rate variability even at 24 h post-exposure. 

Anderson et al (2019) in a presentation delivered by Hedges and Jeong (2021), demonstrated exposure to diesel 

exhaust inside diesel-powered trains for 3 days was associated with reduced lung function and systemic effects 

in terms of altered heart rate variability and increased levels of DNA strand breaks in peripheral blood 

mononuclear cells (PBMCs) when compared with exposures for those on electric trains. The average 

concentration for diesel train occupants, over 3 days, reported by Anderson et al (2019) was 10.3 µg/m3 TWA. 

Therefore, to reduce the risk from both short term and long-term health effects a TLV®-TWA of 10 µg/m3 (EC) 

is recommended. This will reduce health impacts of non-cancer lung health as well as reduce the burden of lung 

and bladder cancer. In addition to the above, measurement of 1-nitropyrene is complimentary.  

1-nitropyrene (1-NP) is more specific as an indicator for cancer causing effects from exposure to nitroarenes 

(Scheepers et al 1995) and measurement is more sensitive at lower concentrations than EC. 1-NP measurements 

can differentiate exposures associated with specific work tasks more effectively than EC, and 1-NP may be 

more sensitive to differences in diesel exhaust composition (Riley et al 2018).  

When considering an appropriate TLV®-TWA for 1-NP, Riley et al 2018 provides a reference from which 

correlations against EC can be interpolated. 

Recognizing that the ACGIH does not consider feasibility, it is nonetheless noted that providing a TLV®-TWA 

for diesel exhaust, measured as Elemental Carbon (EC), of 10 μg EC mg/m3 is in fact feasible with current 

technology. OHCOW recommends this be adopted as the TLV®-TWA, along with the (L) notation.  

Further, OHCOW recommends a TLV®-TWA for 1-nitropyrene as a complimentary measurement for diesel 

exhaust, set at 60 pg/m3. 
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Executive Summary (limit 250 words) 

 

Lead is one of the most vital occupational and environmental pollutants and has been linked to 

health problems, including cardiovascular disease, reproductive issues, central nervous system, 

renal, hematological damage, and carcinogenic effects. The biological exposure index (BEI) for 

lead exposure adopted by the ACGIH is <30 ug/dL and is mainly determined by measuring 

blood lead levels (BLL), as an indicator of the body burden of lead exposure in workers. 

However, studies suggest that lead exposure can cause health effects even at levels below the 

BEI® (Lee et al., 2022).  

 

Numerous studies have found an association between low BLL (<5 ug/dL) and cardiovascular 

health, renal dysfunction, genotoxicity, and the hematological system. Lead is not only inhaled 

upon exposure, but uptake can occur by ingestion (often through cross-contamination during 

work processes) and some skin absorption. Julander et al. 2020 found that ingestion yielded the 

highest contribution. According to the Centers for Disease Control and Prevention (CDC), all 

exposure to lead can induce pathology, with BLL > 5 ug/dL the threshold considered to be 

elevated in both children and adult; therefore, this submission is recommending a BLL of <5 

ug/dL (CDC, 2021). The Australian Institute of Occupational Hygienist (AIOH) suggested 

reduction of BLL to be less than 5 ug/dL for females of reproductive capacity. Several health 

institutions stated BLL of 5 ug/dL and greater is considered elevated and requires clinical action. 

 

Occupational Health Clinics for Ontario Workers (OHCOW) recommends that the ACGIH® 

BEI® be lowered to 5 ug/dL (50 ug/L) to ensure workers are adequately protected.  
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Chemical Substance: Lead BEI® 

Contact Name: Krista Thompson (OHCOW) 

Citable Material Attached (include Permission to Use if necessary): see below 

Specific Action Requested 

 

1. We recommend the ACGIH® BEI® be lowered to 5 µg/dL to ensure protection from both the 

carcinogenic effects, renal, hematological effects and the most sensitive toxic effects, namely damage to 

the nervous system. 

 

Rationale 

 

1. Review of Other Guidelines 

 

According to California Department of Public Health, the mean blood lead level (BLL) for US adults is less than 

1 ug/dL, and the 97.5 percentile for BLL is 3.5 ug/dL (CDPH, 2021); thus, CDPH recommends clinical action 

and follow up for adult BLLs 3.5 ug/dL and greater for the care of adults aged 18 and older and adolescents 

exposed to lead at work. Furthermore, Mount Sinai hospital, in New York indicates that in adults, the BLL of 5 

ug/dL is considered elevated (Mount Sinai, 2021).  

 

The Australian Institute of Occupational Hygienist (AIOH) provided a supplementary guidance value of 0.03 

mg/m3, stating that where there is potential for lead in air to exceed 0.03 mg/m3 or where a risk assessment 

indicates a need, a lead biological monitoring program is required. It further suggested for system to be 

implemented to prevent or significantly reduce exposure for females of reproductive capacity to ensure blood 

lead to be less than 5 ug/dL. (AIOH Exposure Standards Committee, 2018).  

 

2. Literature and Documents for Low Level Lead Exposure  

 

Lead is mainly absorbed through the respiratory and digestive systems with some skin absorption. Exposure to 

lead has been linked to several disorders, including respiratory, neurological, cardiovascular, and urinary, which 

are associated with inflammatory, immune-modulation, and oxidative mechanisms. Lead can disturb the 

inflammatory system and result in increased inflammatory mediators in human, experimental animal, and cell 

culture systems. The mechanisms are well investigated. One of the main mechanisms underlying the toxic 

effects of lead on respiratory, nervous, digestive, cardiovascular and urinary systems is inflammation. Therefore, 

there are complicated immune network and regulatory pathways underlying this inflammatory process. Lead 

exposure at low to moderate levels induces immune dysregulation effects. Similar to asthma, lead-induced 

immunotoxicity via pronounced shifting in the balance in T helper cell function towards the T helper-2 sub type 

cells. Lead-caused inflammatory cascade induction in the central nervous system via activating of glial cells, 

impairing the blood-brain barrier function and over expression of inflammatory mediators (Boskabady et al., 

2018).  

 

The Association between Low Level Lead Exposure and Cardiovascular Health  

 

(Lanphear et al., 2018), a population-based cohort study of 14,289 adults with geometric mean concentration of 

blood lead level of 2.71 ug/dL (geometric SE 1.31). During median follow up of 19.3 years, 4422 people died, 

38% from cardiovascular disease and 22% from ischaemic heart disease. An increase in the concentration of 

lead in blood from 1.0 ug/dL to 6.7 ug/dL, which represents the tenth to 90th percentiles, was associated with all-
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cause mortality (hazard ratio 1.37, 95% CI 1.17-1.60), cardiovascular disease mortality (HR 1.70, 95% CI 1.30-

2.22), and ischaemic heart disease mortality (HR 2.08, 95% CI 1.52-2.85). In analysis restricted to participants 

who had concentrations of lead in blood lower than 5ug/dL, an increase in lead in blood from 1.0 ug/dL to 

5.0ug/dL, which represents the tenth to 80th percentiles, was associated significantly with all-cause mortality 

(HR 1.38, 95% CI 1.15-1.66), cardiovascular disease mortality (HR 1.95, 95% CI 1.46-2.60), and ischaemic 

heart disease mortality (HR 2.57, 95% CI 1.56-4.52). Therefore, this study shows that concentration of lead in 

blood lower than 5ug/dL are associated with all-cause mortality, cardiovascular disease mortality, and ischemic 

heart disease mortality. Concentration of lead in blood lower than 5 ug/dL were associated with an increased 

risk of cardiovascular disease mortality. They also found risk coefficients for cardiovascular disease in the 

subset of participants with concentrations of lead in blood lower than 5 ug/dL were generally larger than 

coefficient in the total sample. Indicating the rate of increase in mortality was greatest with low amount of lead 

in blood. 

 

Cardiovascular-related clinical markers were elevated in this cross-sectional study of United States adults (aged 

20 and older) exposed to lead through the National Health and Nutrition Examination Survey 2007-2008 and the 

2009-2010 datasets. In four quartiles of exposure – 0-2 ug/dL, 2-5 ug/dL 5-10 ug/dL, and 10 ug/dL and over, 

clinical and anthropometric markers were evaluated to examine how the markers manifested in the quartiles. 

With respect to BLL and cardiovascular-related markers in adults, significant associations between BLL, 

diastolic blood pressure, and high-density lipoprotein cholesterol was found in a recent case study. For systolic 

blood pressure, there was a significant elevation when comparing individuals with low BLL of 0-2 ug/dL and 

individuals with higher BLL of 2-5 ug/dL; and even more difference were found with higher BLL of 5-10 

ug/dL. This indicates a potential relationship between higher lead exposure and increasing systolic blood 

pressure (Obeng-Gyasi et al., 2018). The authors further investigate the association between low BLL and 

increased oxidative stress in a 2020 pilot study, where they consider allostatic load, a measure of chronic stress 

and cardiovascular disease. They found a positive association between BLL of 3 ug/dL and increased oxidative 

stress and inflammatory responses (Obeng-Gyasi & Obeng-Gyasi, 2020).  

 

A recent study was conducted to investigate the association between BLL and hypertension in adults when lead 

exposure for the general population is low by utilizing data from the US National Health and Nutrition 

Examination Survey (NHANES) 1999-2016. The study found a positive association between low BLL 

(MEAN=2.20 ug/dL) and higher diastolic blood pressure (Teye et al., 2020). Significant association between 

BLL and hypertension was also observed in a study investigating the health effects of lead exposure among 

communication radio-repair workers in a plant building in Thailand. (Thongsringklee et al. 2021).  

 

The Association between Low Level Lead Exposure and Renal Dysfunction  

 

A case study of paint workers with normal blood pressure and blood lead level as low as 4 ug/dL were found to 

have elevated risk of renal dysfunction (odds ratio (OR) 2.784, 95% CI 1.475-5.25) (Wang et al., 2018). Low 

lead exposure leading to renal dysfunction is further demonstrated in a case-cohort study investigating the 

impact of chronic lead exposure on liver and kidney function and hematologic parameters, in this study they 

found that there was a significant relationship between BLL and white blood cell and serum urea, hepatic 

transaminases, and creatinine (Nakhaee et al., 2019).  
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The Association between Low Level Lead Exposure and Genotoxicity  

 

A study was conducted to investigate whether low lead exposure (<10 ug/dL) affects the sperm quality and the 

results indicated that aberrant DNA methylation of the calcium homeostasis pathway, induced by low lead 

exposure is a potential case for reduced sperm velocity (Zhang et al., 2021).  

 

The Association between Low Level Lead Exposure and Hematological System  

 

A key enzyme for the synthesis of heme is 𝛿- aminolevulinic acid dehydratase (ALAD). 𝛿-ALAD, a 

cytoplasmic enzyme rich in SH groups, is the enzyme that catalyzes the formation of porphobilinogen from - 

aminolevulinic acid (ALA). In one of the studies, it was demonstrated that 𝛿-ALAD is inhibited when lead BLL 

are as low as 5 ug/dL and leads to behavioral changes and childhood lead encephalopathy (Collin et al., 2022). 

The inhibition of 𝛿-ALAD results in the accumulation of 𝛿-ALA in the plasma and excess of 𝛿-ALA leads to 

severe neurological effects (Dehari-Zeka et al., 2020). Moreover, a cross-sectional study among male 

steelworkers was conducted to examine the relationship between serum ɣ-glutamyl transpeptidase (ɣGT) as a 

human index of oxidative stress and BLLs less than 5 ug/dL, a cause of oxidative stress. The study concluded 

that BLL was positively associated with serum ɣGT levels in male steelworkers even at low lead concentrations 

(<5ug/dL) (Lee et al., 2022).  

 

Animal Studies  

 

Animal studies on adult mice were conducted and it was found that exposure to the lowest (30 ppm lead acetate, 

mean BLL 3.4 ug/dL) and highest (330 ppm lead acetate, mean BLL 14.1 ug/dL) levels of lead during early 

development had similar disruptive effects in the neuroimmune system and had long-term consequences on 

different synaptic properties of at least two hippocampal synapses. Due to this, the consequences of early lead 

exposure might worsen the cognitive decline observed in aging men and women (Tena et al., 2019; Dominguez 

et al., 2019).  

 

3. Review of Multiple Routes of Exposure and Mechanism 

 

As mentioned above, lead is absorbed predominately from the respiratory and digestive systems, though skin 

absorption can occur. The effect of multiple routes of lead exposure to body burden was investigated in a case 

study by Julander et al. on brass foundry workers. Based upon their analysis, the authors concluded that hand-to-

mouth behaviour resulting in ingestion yielded the highest contribution (16 ug/dL BLL), followed by skin 

absorption (3.3-6.3 ug/dL BLL) and inhalation (2 ug/dL BLL). Therefore, skin absorption of inorganic lead and 

its contribution to systemic dose needs to be considered (Julander et al., 2020).  

 

Conclusion 

 

Low blood lead levels (BLL) (<5 ug/dL) have been associated with detrimental effects such as cardiovascular 

issues, renal dysfunction, genotoxicity, and hematological problems. Lead can be absorbed through inhalation, 

ingestion and skin contact, with ingestion being the primary route. The Centers for Disease Control and 

Prevention (CDC) has established that any exposure to lead can cause adverse health effects, with a BLL of >5 

ug/dL regarded as elevated in both children and adults, leading to a recommendation of a BLL of <5 ug/dL. The 

Australian Institute of Occupational Hygienists (AIOH) recommends a BLL of <5 ug/dL for females of 

reproductive age. Numerous health institutions consider a BLL of 5 ug/dL or higher to be elevated and requiring 
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clinical intervention. To ensure adequate protection of workers, we recommend the ACGIH ® BEI ® be 

lowered to 5 ug/dL (or 50 ug/L).  
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Executive Summary (limit 250 words) 

 

The carcinogenicity of nickel compounds and nickel metal is confirmed (IARC, 2012). Many 

industries will have a mix between insoluble and sparingly soluble nickel species, which is why 

one TLV® should be applied. With additional supporting information around health effects 

including cancer, reproductive toxicity, and pneumoconiosis / fibrosis, we recommended the 

ACGIH TLV®-TWA be reduced from 0.1 to 0.01mg/m3 for inhalable nickel, applied to soluble 

and sparingly soluble nickel. 

Assigning one limit as 0.01 mg/m3 for inhalable nickel and compounds (both sparingly soluble 

and soluble) should be protective for fibrosis. 

Due to reproductive toxicity of nickel compounds, biological monitoring (of exposure) is 

recommended as this will go hand in hand with personal exposure monitoring. A biological 

exposure index of 10 µg/ L is recommended for mixed nickel species in line with AIOH 2016. 

Establishing a baseline using urinary nickel level can be used as a measure of control 

effectiveness for workplaces where inhalation, or skin contamination, hence inadvertent hand 

mouth contact and ingestion may be an issue (AIOH 2016). 
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Chemical Substance: Nickel and Nickel compounds except nickel carbonyl 

Contact Name: Krista Thompson (OHCOW) 

Citable Material Attached (include Permission to Use if necessary): see below 

Specific Action Requested 

 

1. We recommend one TLV®-TWA for nickel and nickel compounds measured as inhalable nickel as 0.01 

mg/m3 for both soluble and sparingly soluble nickel including mixed nickel species. 

2. Due to the carcinogenicity of nickel and mixed nickel species and reproductive toxicity, we recommend 

inclusion of the abbreviation (L) “exposure to all routes should be carefully controlled to levels as low as 

possible.” 

3. Due to the sensitizing health effects, we recommend inclusion in the notations DSEN (dermal 

sensitization) and RSEN (respiratory sensitization). 

4. We recommend a BEI® for nickel in urine at 10 µg/L. 

 

Rationale 

 

Updated information. 

 

 On 16 March 2022, the EU Commission published Directive (EU) 2022/431. Nickel and its 

compounds: Compounds containing nickel are classified as carcinogens (category 1A). As a result, a 

limit value of 0.01 mg/m3 is introduced for the respirable fraction, and a limit value of 0.05 mg/m3 for the 

inhalable fraction. In addition, the amendment notes that nickel and its compounds can result in dermal 

and respiratory sensitization. 

 

As noted, OHCOW recommends that the ACGIH adopt one single limit based on inhalable nickel 0.01 

mg/m3 for both soluble and sparingly soluble nickel, and mixed nickel species. 

 

 With regard to biological monitoring, “U-Ni was determined in 19 studies. Limit values were exceeded 

in 8 studies among industry workers performing incineration operations, flux cored arc welding, 

stainless steel grinding, and electroplating, and also among workers performing prosthesis preparation. 

The highest level of U-Ni measured (12.12 ± 8.31 µg/g creatinine) was observed in workers performing 

incineration operations and other related activities for more than 3 months and for less than 8 months, in 

a hazard waste incinerator. The lowest levels of U-Ni levels (0.25 µg/g creatinine) were detected among 

workers in the production, polishing and shaving of stainless-steel vessels and other metallurgical 

processes at an iron and steel industry” (Tavares et al. 2022).  

 

Rationale for TLV® 

 

Reproductive health effects / developmental toxicity 

 

The European Union has classified some forms of nickel as reproductive category 2 (based on animal studies), 

H360D, which is attributed to chemicals that may damage the unborn child (AIOH, 2016). 
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The Office of Environmental Health Hazard Assessment 2018, provide information on analyses of pregnancy 

complications included 290 nickel refinery workers and 336 non-nickel workers. They show pregnancy 

complications in Ni refinery compared with other workers, and malformations among the specific nickel refinery 

occupations and non-nickel workers. Reproductive health effects are reported, and correlations are made with 

nickel in urine concentrations.  

 

In a study of more than 300 Russian nickel refinery workers compared with local construction workers, normal 

pregnancies were reduced in the nickel workers compared with the non-nickel worker from an average of 39% to 

29%, whereas spontaneous abortions were increased from 9% to 16%, and structural malformations in live births 

increased from 6 to 17% (Chashschin, et al., 1994). Nieboer (2006) concludes that animal studies suggest that 

“water-soluble nickel salts cause developmental toxicity to rodents in the absence of general or maternal toxicity 

in adult animals.”  

 

If one adds to this the evidence in humans that nickel is transferred across the placenta, it seems prudent to 

classify water-soluble nickel compounds as if they cause developmental toxicity. Previous studies of nickel 

exposure have demonstrated an increased risk to the fetus including spontaneous abortion and birth defects 

(Chashschin et al. 1994). 

 

Due to the risk of exposure for women of reproductive age, since nickel freely passes the placental barrier; 

knowing how much nickel is present and whether women of reproductive age have a likelihood of being exposed 

must be considered in biological monitoring. 

 

It should also be noted that in Europe there are requirements for managing pregnant and breastfeeding workers. 

 

Cancer (Mixed soluble, sparingly soluble, and insoluble nickel and carcinogenicity). 

 

There is debate about whether soluble nickel compounds are carcinogenic. Oller (2002) cited in AIOH 2016, 

concluded that the weight of evidence indicated that inhalation exposure to soluble nickel alone will not cause 

cancer. However, Oller conceded that if soluble nickel is inhaled at concentrations high enough to induce chronic 

lung inflammation, these compounds may enhance carcinogenic risks associated with inhalation exposure to 

other substances. Further evidence clearly indicates that these compounds strongly increase the potency of oxidic 

nickel compounds and should be considered as carcinogenic (Goodman et al. 2009, cited in AIOH 2016).  

Under the European Union Classification, Labeling and Packaging (CLP) legislation, many soluble and insoluble 

nickel compounds are classified as Carc 1A, stating that these compounds are known to have carcinogenic 

potential for humans, based largely on human evidence. This classification specifies inhalation as the only route 

of concern. Nickel metal is classified as Carc 2, suspected human carcinogen based on evidence from animal 

studies. Likewise, IARC classified soluble and insoluble nickel compounds under Group 1, carcinogenic to 

humans, and nickel metal and alloys under Group 2B, possibly carcinogenic to humans. 

 

Analyses of dose-responses for the main chemical forms of nickel (soluble, oxidic and sulfidic compounds) that 

included 13 cohorts of nickel workers (~100,000 workers), indicated that no excess cancer risk were observed in 

these studies when exposures to nickel in the inhalable aerosol fraction were kept ≤0.1 mg Ni/m3 (Oller et al. 
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2014). The ability of nickel substances to induce respiratory tumors after inhalation may be related to the 

bioavailability of the Ni2+ ions at target sites within epithelial cells.  The bioavailability of Ni2+ ions in the 

nucleus of target respiratory epithelial cells is not dictated by just the water solubility of the nickel particle but by 

the interplay of factors like respiratory toxicity, extracellular and intracellular dissolution, and lung clearance 

(Goodman et al. 2011). 

 

Pneumoconiosis / fibrosis 

 

Pulmonary changes such as fibrosis and pneumoconiosis have been reported in workers inhaling nickel dust. 

Airway hypersensitivity and asthma have been reported for some workers in the nickel-plating industry (Kolberg 

et al. 2020, Warshaw et al. 2019, Wittczak et al. 2012). Other respiratory effects of the chronic inhalation of 

nickel can include hypertrophic rhinitis and sinusitis, the formation of nasal polyps, and perforations of the nasal 

septum (Bolek et al. 2017). 

 

Berge and Skyberg (2003) analysed radiographs of 1046 workers in a nickel refinery in Norway, according to the 

ILO standards. Pulmonary fibrosis (PF) was defined as a reading of ILO score ≥1/0 and following this criterion, 

47 cases (4.5%) were identified. In logistic regression models, controlling for age and smoking, there was 

evidence of increased risk of PF with cumulative exposure to soluble nickel or sulfidic nickel (p = 0.04 for both). 

 

Logistic regression models with cumulative exposure to one nickel species at a time, predicted a 10% (soluble 

Ni) or 15% (sulfidic Ni) increase in the prevalence of ILO score > 1/0 per 1 mg/m3–year. With a sampler 

correction factor the reported average exposure time of 21.8 years, the 75th percentile cumulative exposure levels 

corresponded to average exposure levels of 0.17 and 0.6 mg/m3 for soluble and sulfidic Ni, respectively. 

Although it is noted that an ILO profusion score of  > 1/0 does not necessarily correlate with clinical (or 

histopathological) diagnosis of lung fibrosis. 

 

The incidence and severity of chronic lung inflammation (chronic active inflammation, alveolar proteinosis, and 

fibrosis), also after 2-years (NTP 1996b, 1996c) of inhalation exposure to 0.11 mg/m3 nickel sub sulfide, were 

similar to those observed with an exposure of 0.11 mg/m3 of nickel sulfate in rats based on 100 animals per 

group. 

 

In the chronic nickel sulfate study, rats were exposed to the lower exposure level of 0.06 to 0.03 mg Ni/m3, 

resulting in a significant increase in incidence and severity of lesions to background inflammation levels. A 

similar steep dose‐response for inflammation is expected for nickel sub sulfide, based on results from 13‐week 

studies. 

 

For the soluble nickel sulfate hexahydrate, a Lowest Observed Adverse Effect Concentration (LOAEC) for 

chronic lung inflammation and fibrosis could be determined at 0.06 mg Ni/m3, and a definitive No Observed 

Adverse Effect Concentration (NOAEC) for these effects could be set at 0.03 mg Ni/m3 in the 2-years study.  

 

Inflammatory reactions including fibrosis were also seen with poorly soluble nickel subsulfide (NTP 1996b) at 

0.11 mg Ni/m3 and with nickel oxide (NTP 1996a) at 0.5 mg Ni/m3 and, in form of alveolar proteinosis, alveolar 
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histocytosis, and chronic inflammation, with metallic nickel exposure at 0.1 mg/m3. In all three cases this was the 

lowest concentration applied and no NOAEC could be identified.  

 

SCOEL argued that due to the severe lung damage or chronic inflammation observed at these concentrations, the 

2-3-fold higher deposition of nickel after exposure to nickel oxide in humans (as compared in rats) and the 

estimated longer retention half-times in humans for Ni3S2 and NiO (Oller and Oberdoerster 2014), an OEL of 

0.005 mg/m3 (respirable fraction) was proposed for poorly soluble nickel compounds and metallic nickel. 

 

The importance in particle size for deriving occupational exposure limits 

 

NiPERA Inc. is the Nickel Institute's independently incorporated science division. NiPERA is also characterizing 

particle size and toxicity based on particle size. For the inhalable Derived No Effect Level (DNEL) NIPERA 

considered 13 cohorts (> 100,000 workers) and exposure data reported in terms of inhalable aerosol fraction. In 

this calculation the exposures were converted to inhalable equivalents (37 mm sampler to inhalable sampler, 

factor 2) as described in Oller et al (2014) and Goodman et al (2011). Dosimetric adjustments were applied to the 

animal toxicity values for each group of nickel substances calculating HECs to animal exposure by considering 

workplace particle size distribution (PSD). NiPERA noted that restricting inhalable nickel exposures to levels 

that prevent lung tumours is also expected to prevent nasal tumours. NiPERA therefore proposed inhalable 

DNELs of 0.05 mg Ni/m3 for all nickel compounds and nickel metal, respectively based on respiratory cancer 

effects in humans, supported by animal data and respiratory toxicity effects base on animal data supported by 

human data. 

 

Analyses of dose-responses for the main chemical forms of nickel (soluble, oxidic, and sulfidic compounds) that 

included 13 cohorts of nickel workers (~100,000 workers), indicated that no excess cancer risk were observed in 

these studies when exposures to nickel in the inhalable aerosol fraction were kept ≤ 0.1 mg Ni/m3 (Oller et al. 

2014). 

 

NiPERA stated further that “neither” the inhalable DNELs of 0.05 mg Ni/m3 for all nickel compounds and nickel 

metal, nor the respirable guidance value of 0.01 mg Ni/m3 were derived based on effects of nanoparticles (ECHA 

2018). When setting a TLV®-TWA for nickel for both inhalable and respirable nickel compounds and metal, it is 

recommended that caveat be provided where the TLV®-TWA has not considered nickel metal / nickel 

compounds with a (nano particle) size < 0.1 µm (ECHA 2018, NiPERA 2017). 

 

Inhalable DNELs of 0.05 mg Ni/m3 for all nickel compounds and nickel metal, respectively was proposed based 

on respiratory and cancer effects (not for nickel metal) in humans, and supported by animal data and respiratory 

toxicity effects base on animal data supported by human data (NiPERA, ECHA 2018). The respirable guidance 

value of 0.01 mg Ni/m3 for nickel metal and nickel compounds was derived by calculating HECs, specifically 

from the animal data by using full dosimetry adjustments and for each group of nickel substances. Also nickel 

specific data for clearance rates and updated values for respiratory tract surface area in rats were considered 

(NiPERA, ECHA 2018). Derived exposure risk relationship for less soluble nickel compounds (Begründung zu 

Nickelverbindungen in TRGS 910) based on a threshold for cytotoxicity in the rat lung converted into the HEC 

for poorly soluble respirable nickel compounds of 6 μg Ni/m3 (equivalent to 0.006 mg/m3) for an assumed excess 

cancer risk in humans at workplace of 4 in 10,000. Conversely 4 in 1000 is a HEC 13 μg Ni / m3 (equivalent to 

0.013 mg/m3) (ECHA 2018). 
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Figure: % excess risk vs. exposure to respirable “less soluble” nickel compounds (Adapted from ECHA 2018). 

 

Lowering the occupational exposure limits for nickel 

 

Occupational exposure limits (OEL) are sometimes defined as sharp boundaries that must not be exceeded (e.g., 

EU CAD, EU Carcinogens Directive, UK COSHH), and other times as exposure averages, provided short-term 

exposure limits or excursion limits are not exceeded. The large variability in workplace exposure means that 

occasional high results occur even where the exposure is generally well controlled. One may think that as long as 

all measured exposure averages are < OEL, compliance will be demonstrated. This is not the case.  

 

In practice, the majority of the exposure measurements have to be much lower than the OEL for compliance to be 

demonstrated with any degree of confidence. For example, the estimated average needs to be 5 or 10-fold lower 

than the OEL, depending on the OEL value and the number of measurements. 

 

An exposure profile must be derived from exposure measurements, to allow sound statistical analysis. Only then 

can accurate comparisons be made of exposures against the OEL. Of course, to do this the level of exposure must 

be measured well below the OEL. International standards require that the exposure be measured at concentrations 

≤ one tenth, or 10% of the OEL. 

 

The level that can reliably be measured, is commonly referred to as the limit of quantitation (LoQ), minimum 

reported value (MRV), or limit of reporting (LoR). This requirement is described in ISO 15202- 3 which states 

that the LoQ be no more than 0.1 or 10% of the OEL. BS EN 482:20126 requires that the measuring range of the 

procedure or instrument shall cover the concentration from 0.1 times to 2 times the OEL. If technical feasibility is 
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considered, then that is an important consideration. However, TLV®s can be derived without considering 

feasibility, and used to drive technical advancements. 

 

Conclusion for TLV® 

 

Setting a TLV®-TWA for inhalable nickel at the level of 0.01 mg/m3 provides a safety margin to protect against 

cancer and will reduce the risk from fibrosis and pneumoconiosis when exposed to nickel.  

 

Rationale for BEI® 

 

Biological monitoring of exposure should be considered as being complimentary to personal exposure 

monitoring. Biological monitoring should be carried out and a BEI® of 10 ug/L in urine is recommended in line 

with AIOH 2016 position paper “ Nickel and its compounds – potential for occupational health issues” which is 

especially important when considering reproductive health effects and developmental toxicity. 

 

Despite the major differences in elimination between different nickel compounds, evaluating exposures should be 

based on biological monitoring for urinary nickel, with air monitoring being complementary to identify where 

additional controls are required. Biomonitoring studies in exposed workers and conducting intervention studies, 

have shown improvements of nickel excretion in urine (Beattie et al. 2017; Lehnart et al. 2014). These 

improvements most likely have occurred by making workers aware of their individual situations and by 

successfully implementing improved hygienic measures at the workplace. 

 

A useful intervention study (model) involving stainless steel welders who are exposed to nickel and as part of the 

process has demonstrated significant reductions in exposure. Air monitoring and biological monitoring (nickel in 

urine) before and after improved controls including improvements to respiratory protection (to positive pressure) 

and localized exhaust ventilation demonstrated reductions in respirable nickel exposure from 0.08 mg/m3 (2008) 

to 0.003 mg/m3 (2011) and 7.9 μg/ L (2008) to 3.1 μg/L for urinary nickel. The urinary nickel reduction was 

close to 3.0 μg/L which is the German Biological Workplace Reference Value (BAR) representing the ninety-

fifth percentile in the general population (Lehnart et al. 2014). 

 

With respect to soluble nickel (nickel sulfate) exposure, the use of biomonitoring has been used to assess 

exposure in the electroplating industry. The aim of the study by Beattie et al. 2017, was to investigate whether 

“repeat biological monitoring” over time could help to drive improvement in exposure to nickel. The study 

demonstrated positive correlations between hand contamination and biological monitoring results that show that 

dermal exposure is a significant factor (Beattie et al. 2017).   

 

Biological monitoring of workplace exposure to poorly soluble nickel compounds is essential due to the potential 

carcinogenic effect of poorly soluble nickel compounds on the lung of exposed workers after inhalation. A 

background level of < 3 μg/L (DFG, SCOEL, 2011) can be based on the concentrations of nickel in urine from 

non-occupationally exposed persons. A target (action) BEI® has been recommended as 5 μg/L for poorly/ 

insoluble nickel compounds and precautionary guideline value of 10 μg/L nickel in urine is recommended as 
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being more or less equivalent to sparingly soluble nickel (Tommassen et al. 1999, AIOH 2016); above this may 

indicate work practices that are not best practice. 

 

Mean concentrations between about 1 – 5 μg/L and 95th percentiles up to 8 μg/L have been reported in the adult 

population depending on the geographic location (Kiilunen et al., 1987; Minoia et al. 1990; Nisse et al., 2017). In 

the late 1980s the range of urinary nickel concentrations were noted by Neiboer E (2001) for Sudbury (Ontario, 

Canada) residents between 0.3 – 7.6 μg/L. It is important therefore that any reference value, for nickel in urine, 

for non-exposed be taken from the general population for those living in the same general area such as that 

determined for Sudbury. A precautionary BEI® of 10 μg/L nickel in urine is recommended, as being more or less 

equivalent, to sparingly soluble airborne nickel (Tomassen et al. 1999); above this may indicate work practices 

that are not best practice. Establishing a baseline using urinary nickel level can be used as a measure of control 

effectiveness for workplaces where inhalation, or skin contamination, hence inadvertent hand mouth contact and 

ingestion may be an issue and drive continuous improvement (AIOH 2016). 

 

More recently Joh et al. (2021) has been able to correlate loss of lung function with quartiles of blood nickel 

concentrations which provides useful direction when considering a BEI® for nickel. 

 

A Korean study was carried out to assess the dose-response relationship between environmental exposure to 

nickel and pulmonary function in the Korean general population aged 40 or older. Quartiles of blood nickel 

concentrations were significantly associated with markers of pulmonary function in Korean men, such as forced 

expiratory volume in 1 second (FEV1) and forced expiratory flow 25–75% (FEF25–75%). Dose–response 

relationships were observed between blood nickel levels and these pulmonary function parameters (FEV1 and 

FEF25–75%) (Joh et al. 2021). This study provides useful information to further help refine a BEI® based on 

pulmonary health effects. 

 

When reviewing a BEI® for nickel, AIOH 2016 provides useful guidance in addition. SCOEL (2011) have 

recommended a biological guidance value (BGV) of 3 μg/L in urine based on background levels in a working age 

population.  

 

As such, it is not health based or an indication of risk and can only be considered as a guideline value when 

assessing effectiveness of exposure controls such as personal protective equipment (PPE). There should be 

caution when applying the SCOEL biological guidance value as this has not considered a range of populations.  

 

A more realistic urinary nickel reference value has been proposed by Hoet et al (2013), which covers a range of 

countries and populations. They recommend an upper reference limit (URL) equivalent to a 97.5th percentile of 

nickel in urine for a general adult population of 6 μg/L. However, as noted, mixed nickel species for Sudbury 

residents have been reported between 0.3 – 7.6 µg / L. Tomassen et al (1999) determined an airborne equivalent 

correlation between external exposure levels of sparingly soluble nickel compounds and urinary levels of nickel, 

whereby 0.1 mg/m3 exposure was equivalent to 10 μg /L in urine. This provides the rationale for assigning a 

BEI® of 10 μg/L in urine.  
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  Toronto, ON  M3C 3R6    

  Canada      

 

Telephone:   416-510-8713    Email:   Koconnell@ohcow.on.ca   

 

Executive Summary (limit 250 words) 
 

 

We recommend a TLV®-TWA of 20 ppm. One study found adverse health effects at an estimated 

average exposure in paint of 40 ppm (Lindström and Wickström 1983), which was not cited in the 

Stoddard solvent documentation (available at: https://www.acgih.org/stoddard-solvent/). It is noted 

that this is an imperfect study, as the exposure average was estimated, and the painters had other 

solvent exposures. In addition, a study by Järnberg et al (1997) exposed volunteers to 50 ppm for 2 

hours, and did not result in irritation or CNS effects. A study published by Lammers et al (2007) 

compared volunteers exposed to 10 ppm then to 100 ppm, both for 4 hours, spaced 7 days apart. No 

irritation or CNS effects were observed with 10 ppm exposure, but effects were observed at 100 

ppm. A study by Ernstgård et al (2009) observed irritation in volunteers exposed to 50 ppm 

Stoddard solvent for 4 hours, but not in 16 ppm Stoddard solvent, nor clean air. 
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Chemical Substance: Stoddard Solvent 

Contact Name: Krista Thompson (OHCOW) 

Citable Material Attached (include Permission to Use if necessary): see below 

Specific Action Requested 

 

1. We recommend a TLV®-TWA of 20 ppm.  

 

Rationale 

 

Stoddard solvent is also known as mineral spirits, naptha safety solvent, petroleum solvent, white spirits, and 

products with the trade names Texsolve S and Varsol 1. Stoddard solvent is a petroleum distillate that has many 

industrial uses, including as a dry-cleaning agent, degreaser, paint thinner, in some photocopier toners, in 

printing inks, and in adhesives (Wypych, ed., 2019). Benzene is a trace impurity in stoddard solvent that 

typically contained <0.1% benzene since 1975 (Carpenter 1975, Kalnas and Teitelbaum 2000, Kopstein 2011, 

NIOSH 1977, William et al 2008), with additional refinements in the year 2000 resulting in even lower amounts 

ranging from 0.0002 to 0.09% benzene (Fedoruk et al 2003, Williams et al 2008). Benzene is not typically listed 

on the SDS since concentrations are below the reporting requirement of 0.1%. However, given the range of 

concentrations and vaporizations, there is no correlation between benzene concentration and airborne exposure 

relative to Stoddard solvent airborne exposure. 

 

The Scientific Committee on Occupational Exposure Limits (SCOEL) of the European commission 

recommended an 8-hour occupational exposure limit (OEL) of 20 ppm to prevent nervous system effects, and a 

short-term exposure limit (STEL) of 50 ppm to prevent acute irritation and acute neurological symptoms 

(SCOEL 2007). The SCOEL OEL was based on a study Lindström and Wickström (1983), which compared 219 

house painters exposed to an average of 40 ppm Stoddard solvent, compared to 229 unexposed reinforcement 

workers. This study demonstrated a reduction in testing in exposed workers, particularly in performance in 

simple reaction time and short-term visual memory tests (Lindström and Wickström 1983). Ultimately, SCOEL 

applied a safety factor of 2 to establish an OEL of 20 ppm.  

 

Safe Work Australia (SWA) has a recommended workplace exposure standard (WES) for stoddard solvent 

(referred to as mineral spirits): a time-weighted average (TWA) of 50 ppm, and a short-term exposure limit 

(STEL) of 100 ppm (SWA 2020). The WES-TWA is based on irritation, central nervous system (CNS) 

impairment, and brain damage. The WES-STEL is based on acute irritation, nausea, and CNS depression. These 

recommended WES are in draft form, and have not been adopted. The reason presented by SWA (2020) for the 

WES-TWA of 50 ppm and WES-STEL of 100 ppm is eight acute volunteer inhalational studies published in the 

Deutsche Forschungsgemeinschaft (DFG) Maximale Arbeitsplatz-konzentration (MAK) documentation for 

Stoddard solvent (referred to as hydrotreated heavy naphtha (petroleum)) (DFG 2010). Notably the DFG MAK 

for Stoddard solvent is 100 ppm. 

 

Of the studies cited by SWA (2020) and DFG (2010), there were three studies published since 1997 that were 

not previously considered by the ACGIH and that warrant further discussion: studies by Järnberg et al (1997), 

Lammers et al (2007), and Enstgård et al (2009). 
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A study published in 1997 observed that exposure to 50 ppm Stoddard solvent for 2 hours did not result in any 

irritation or CNS effects in 9 male volunteers (Järnberg et al 1997). Notably this study was not done for a full 8-

hours. 

 

A study published in by Lammers et al (2007) investigated exposure to Stoddard solvent on two occasions, with 

the 12 male volunteers exposed to 10 ppm Stoddard solvent and 100 ppm Stoddard solvent, spaced 7 days apart. 

No irritation or CNS effects were reported when volunteers were exposed to 10 ppm Stoddard solvent for 4 

hours. CNS effects were reported and observed when volunteers were exposed to 100 Stoddard solvent for 4 

hours, specifically for: increased fatigue, decreased vigour, finger tapping with dominant hand (but not non-

dominanent hand), and greater latency in attention in both simple reaction time and colour word vigilance tests 

(Lammers et al 2007). Some of the effects were deemed “subtle” in terms of magnitude of effect, but still 

statistically significant when analyzed with a test of significance. Notably the authors conclude the differences 

in simple reaction time test was more consistently related to exposure, by comparing the results for 10 ppm 

exposure to 100 ppm exposure. Although the duration was not 8-hours, it still shows that 4-hours of exposure to 

the current TLV®-TWA can result in adverse health effects. 

 

The study by Ernstgård et al (2009) assessed investigated exposure to Stoddard solvent using 6 male and 6 

female volunteers exposed for 4 hours, exposed to 16 ppm of Stoddard solvent with 19% aromatics (Stoddard 

solvent is typically 10-20% aromatics), 50 ppm of Stoddard solvent with 19% aromatics, and clean air. This 

review is focused on different metrics of irritation. The only significant increases in irritation in exposed 

compared to unexposed clean air were: 50 ppm Stoddard solvent with 19% aromatics (eye irritation), but not in 

16 ppm Stoddard solvent with 19% aromatics (Ernstgård et al 2009). Notably, white spirit with lower percent 

aromatics were also included, but did not result in irritation. 

 

These studies indicate there are irritation effects at 100 ppm exposure to Stoddard solvent, even at 50 ppm 

exposure. It is recommended that a TLV®-TWA of 20 ppm be adopted, in line with the study published by 

Lindström and Wickström (1983) and a safety factor of 2. Notably, the study by Lindström and Wickström 

(1983) was not cited in the Stoddard solvent summary published by ACGIH (available at: 

https://www.acgih.org/stoddard-solvent/). It is noted that this was an imperfect study, as the exposure average 

was used, and the painters likely had other solvent exposures. If this study is rejected for these reasons, then the 

study identifying health effects occurring at 50 ppm still warrant consideration (Enstgård et al 2009).  
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Executive Summary (limit 250 words) 

 
There are a large number of workers globally who are exposed directly and indirectly to 

welding fumes. According to one estimate there are 11 million welders in the world and 

approximately 1 million in North America 3. This is likely be an underestimate since many 

countries do not have a robust human resource database nor are indirectly exposed workers’ to 

welding fume usually reported. 
 

 

The welding fumes exposure has wide range of adverse health effects reported in the scientific 

literature on respiratory, cardiovascular, and neurological systems. Moreover, it has been 

established that chronic exposure to welding fumes causes lung cancer and ocular melanoma. 
 

 

Many countries have instituted 5 mg/m3 PNOS exposure limit for welding fumes but it is too 

high to protect welders from its adverse health effects, therefore, it has been withdrawn in many 

cases. Due to its complex chemistry and wide range of exposure scenarios it is difficult to 

determine a TLV® that can encompass all the scenarios and protect from all the adverse health 

effects. However, due to its vast and deep impact on welders’ health, it is imperative that a 

TLV® is established. 
 

 

OHCOW recommends a two-prong strategy: 

mailto:koconnell@ohcow.on.ca
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1) A TLV®-TWA of 0.1 mg/m3 (respirable) be established to protect welders from 

welding fumes’ non-cancerous health effects such as asthma, COPD, respiratory irritation, and 

neurological symptoms, except for stainless-steel welding and welding with beryllium. 

2)  In case of stainless-steel welding fume, the current TLV®s for hexavalent chromium 

and nickel should be used. In cases where beryllium exposure is suspected, the current beryllium 

TLV® should be used. 
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Chemical Substance: Welding Fumes 

Contact Name: Krista Thompson (OHCOW) 

Citable Material Attached (include Permission to Use if necessary): see below 

Specific Action Requested 

 

1.   It is recommended that the ACGIH TLV®-TWA be 0.1 mg/m3 for welding fumes in general, except 

stainless steel welding fumes and when beryllium is suspected in the welding fumes. 

2.   When stainless steel welding is done, users should be directed to use nickel and hexavalent chromium 

TLV®s. When beryllium is suspected in the welding fume, users should be directed to use the 

beryllium TLV®. 

 

Rationale 

 

Introduction 

 

The welding fume exposure causes a wide range of adverse health effects (to name a few asthma, COPD, 

pneumoconiosis) including lung cancer due to its complex and wide range of chemical composition. The 

welding fumes composition can be classified into different kinds of metals, gases, and particulates, and the 

levels of which depends on the type of welding, base metal, coating on the welding surface, composition of 

the electrode, and other work practices factors such as the rate and the length of a weld etc.1 

 

According to CAREX there were 330,000 welders in Canada in 2016 mainly in manufacturing and metal 

fabrication, construction, automotive repair and maintenance, and architectural and structural metals 

manufacturing. The welders are also categorized according to the intensity of welding fume exposure into low 

(12% of the welders), medium (32% of the welders), and high (56% of the welders). Moreover, welding fume 

exposure and welding lead to 310 lung cancer and 15 ocular melanomas each year in Canada, based on the 

retrospective exposures from 1961-2001. This amounts to 1.3% lung cancer cases and 5.4% of ocular 

melanomas diagnosed annually from welding fumes. The lung cancers attributed to welding fumes costed 

$308 million in 2011.2 It is estimated that there are 11 million welders worldwide and 110 million workers 

who are indirectly exposed to welding fumes.3 In USA, there is also a large workforce of 754,000 who is 

employed as a full-time welder in 2021.4 

 

Many countries have implemented an exposure limit of 5 mg/m3 PNOS to control the welding fume exposure. 

However, this limit seems to be too high in the light of new scientific evidence. Therefore, some countries 

have withdrawn this exposure limit. The Netherlands’ exposure limit of 1 mg/m3 is case in point which has 

been reduced from 5 mg/m3 (GESTIS limit values database  GESTIS International Limit Values (dguv.de)). 

The PNOS exposure limit has been used historically for substances where clear scientific evidence or a dose 

response relationship is not available. However, a more rigorous approach should be taken when dealing with 

a confirmed carcinogen such as welding fume. Keeping in mind the welding fumes exposure’s sever health 

outcomes it is necessary that a strategy is developed to lower welders’ exposure to welding fumes. Therefore, 

we are making an attempt through this submission to gather some of the main scientific studies which can be 

helpful in determining a TLV®. 

 

https://limitvalue.ifa.dguv.de/WebForm_ueliste2.aspx
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Welding fume related adverse health effects 

 

Korczynski, R. (2000), studied the occupational health concerns of the welders in 8 companies initiated by 

the Workplace Safety and Health Branch of the provincial government of Manitoba, Canada. The study was 

initiated in response to the welders’ complaints about the excessive welding fumes at their workplaces and 

adverse health effects from welding fume exposure such as welders’ flash, sore/red/teary eyes, headaches, 

nosebleeds, and a black mucus discharge from their nasal discharge. Different hazards of welding fume such 

as iron oxide, manganese, ozone, carbon monoxide, and noise were measured, and exceedances were reported 

for all of them as compared with the ACGIH TLV®s. It was found that the welders had high incidence of 

bronchitis and pneumonia as compared with the non-welders. Welders in general also has more work-related 

symptoms of chronic rhinitis, cough, phlegm, wheeze, chest tightness, dyspnea, pleurisy than non-welders.5 

 

Antonini, J. (2003), conducted a literature review of epidemiological studies on welding fume related health 

effects. It is concluded in the study that it is difficult to compare the epidemiological studies due to vast 

variations in the exposure variables, however, large number of welders experienced bronchitis, airway 

irritation, lung function changes, and a possible increase in the lung cancer.6 

 

Toren et al (2020), studied invasive pneumococcal disease (IPD) in a population-based case control study to 

further the knowledge of metal fume exposure and the incidence of pneumonia. 4438 cases were selected in 

the age bracket of 20-65 from a Swedish registry of invasive infection caused by streptococcus pneumoniae. 

A Job Exposure Matrix is used to characterize the metal exposure. The welders showed an increased risk of 

IPD with an Odds ratio of 2.99 (95% CI 2.09 to 4.30).7 

 

Grahn et al (2021), conducted a population-based cohort study from the Stockholm Public health survey from 

2002, 2006, 2010, followed up until 2014 to study the Chronic Obstructive Pulmonary disease (COPD) among 

different professionals by linking the data with a Job Exposure Matrix (JEM). It is concluded that a positive 

exposure response relationship was found between particles (respirable crystalline silica, gypsum and insulation 

material, diesel exhaust, asphalt/bitumen, and welding fume) and COPD. Welding fume had a Hazard Ratio 

(HR) of 1.57 (CI 1.12-2.21).8 

 

Toren et al (1999), studied onset of asthma in different professions in a nested case referent study. A random 

population sample of 15813 people between the ages of 21 to 51 years were selected and the information 

about their occupational exposure and asthma diagnosis were obtained through questionnaire survey. The 

odds ratio for welding fume causing physician diagnosed asthma was 1.6 (CI 1.1-2.6). It is concluded that the 

study indicates that the acrylate-based compounds and welding fume exposures are associated with adult 

onset of asthma.9 

 

Karjalainen et al (2002), performed a population-based study to learn the risk of asthma in different 

professions from the entire workforce of Finland. A total of 49575 cases of medically diagnosed asthma in 

the age range of 25-59 years were selected with onset of asthma within 1986-1998. 275 non administrative 

professions were studied to calculate the relative risk of acquiring asthma. A relative risk of 1.91 (1.71-

2.14) was found among 395 male welders. 23 women were also found with a RR of 1.6 (1.06-2.41).10 
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Kendzia et al (2013), pooled 16 case control studies to calculate an odds of lung cancer among welders. The 

studies were from different countries including Canada, China, New Zealand, ad Europe from 1985-2010. A 

total of 15483 cases of lung cancer and 18388 controls were selected who performed welding on regular basis 

and as part time or on occasional basis. The OR for regular workers who ever performed welding was 1.44 

(95% CI: 1.25-1.67) and for part time welders the OR was also elevated (OR=1.27, CI: 1.10-1.28) but not as 

much as regular welders.11 

 

Ibfelt et al (2015), studied 9 different cardiovascular conditions among welders. The cohort was followed from 

1986 to 2006. The study concluded that the particulates from welding fume increases the risk of 

cardiovascular diseases.17 

 

Lung cancer risk from welding fume exposure 

 

Honaryar et al (2019), performed a meta-analysis of 20 case-control studies and 25 cohort/nested case 

control studies to study the risk of lung cancer from welding fumes. The meta RR for cohort studies was 

1.29 (CI: 1.2-1.39), 1.87 for case-control studies (CI: 1.53-2.29), and 1.17 for case-control studies adjusted 

for smoking and asbestos with a CI of 1.04-1.38. It is concluded in the study that the welding fumes 

increases the risk of lung cancer regardless of the type of steel welded, welding method, and independent 

of the presence of asbestos or tobacco smoking.12 

 

International Agency for Research on Cancer (IARC) published a monograph volume 118 in 2017 in which 

they carried out an extensive evaluation of epidemiological evidence of welding fumes carcinogenicity. The 

IARC concluded that there is sufficient evidence in humans that the welding fumes causes lung cancer. A 

positive association between welding fume exposure and kidney cancer has also been found. There is also 

sufficient evidence for ocular cancer from ultraviolet radiation from welding operation. Furthermore, chronic 

exposure to welding fume has also been associated with asthma, brochitis, lung function changes, 

neurological disorders, and renal tubular dysfunction if cadmium is present.3 

 

Cherrie & Levy (2020) evaluated some new evidence regarding welding fume’s carcinogenic effect after 

IARC evaluation in 2017. The new evidence reinforces the earlier evidence that the welding fumes are 

carcinogenic without differentiating between stainless steel or mild steel welding fumes. The evidence for 

carcinogenicity is from welding fumes as total welding aerosols. The paper also suggests that the risk of 

lung cancer from welding fumes has been observed below 1 mg/m3 or may be as low as 0.1 mg/m3. 13 

 

Adverse health effects and welding fume exposure levels 

 

Sjogren et al (2022), in a study entitled “An occupational exposure limit for welding fumes is urgently 

needed” suggest that the limit for welding fumes of 5 mg/m3 which is used by many countries is not adequate 

to protect welders from its adverse health effects. Different studies are also summarized with welding fume 

exposure levels and their corresponding health effects. The range of exposure levels which can cause 

Ischemic Heart Disease, COPD, and preterm birth in pregnant women is 0.1-3.2 mg/m3. 13,14 
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Lillienberg et (2008), conducted a population-based study on welding fume exposure and respiratory health 

effects such as asthma, wheezing, and bronchitis. 316 males from 10 European countries were selected with a 

work history of welding at work including welders. The welding related work history was obtained through a 

questionnaire with questions on different variables of welding exposure and the frequency of exposure. The 

exposure levels were assigned to a particular welding activity and duration by the experts using the Netherland 

welding database comprised of 20 years of data. The exposures were divided into three tertiles and the lowest 

tertile of 0.02-0.31 mg/m3 has a prevalence risk of 0.95 (95% CI 0.52-1.74) for asthma, 1.32 (95% CI 0.89-

1.95) for wheeze, and 1.57 (95% CI 1.04-2.37) for bronchitis. Significant relation was found between 

bronchitis and welding fume exposure but not with asthma. 15 

 

Taj et al (2021), studied the effect of welding fume exposure on cardiovascular system in a six year 

longitudinal study. 78 mild steel welders and 98 controls were included in the study. The blood pressure and 

other markers of cardiovascular system were measured six years apart along with respirable dust in the 

breathing zone of the workers. Exposure to low to moderate respirable dust levels (0.5-0.7 mg/m3) were 

associated with increased blood pressure.16 In a similar study Gliga et al (2020), found that the respirable dust 

at 0.5 mg/m3 and manganese at 0.049 mg/m3 in welding fumes are associated with changes in neurology 

related proteins in the blood serum. One of the proteins could be linked to Alzheimer’s disease.18 

 

Siew et al (2008), conducted a study to learn iron and welding fume exposure and the risk of lung cancer 

among Finnish men by using the Finnish Job Exposure Matrix. The relative risk for lowest welding fume 

category i.e., 0.1-10 mg/m3 is 1.09 (95% CI 1.05-1.14) for all types of lung cancers. The highest welding 

exposure category of ≥ 50 mg/m3 has highest RR of 1.15. These RR were adjusted for confounding exposures 

such as iron, nickel, and benzo(a)pyrene.19 

 

Pesch et al (2019), studied the risk of lung cancer from exposure to welding fumes, nickel, and hexavalent 

chromium in two German case-control studies which were followed from 1988-1996. 3418 cases and 3488 

controls were selected for the study and the information from their job specific questionnaire was linked to the 

respective measurements obtained from the worksites. An average welding fume exposure of ≤ 1.8 mg/m3 

showed increased risk of lung cancer independent of nickel and hexavalent chromium exposure; OR of 0.98 

(95% CI 0.64-1.51) for less than 1 year exposure, OR of 1.41 (95% CI 0.73-2.75) for an exposure between 1-5 

years, OR of 2.27 (95% CI 1.18-4.37) for more than 5 years of exposure.20 

 

Koh et al (2015) studied the relationship between welding fume exposure and Chronic Obstructive 

Pulmonary Disease in welders at two shipyards in Korea. 240 welders participated in the study by going 

through a medical examination and filling out health and occupational history questionnaires. The 

pulmonary function test was performed by qualified staff with strict quality control measures which is 

different from many other similar studies. 884 total welding fume sampling results were used from 2002 to 

2009 to run the multiple linear and logistic regression models to understand the association between COPD 

and welding exposure. The exposures were grouped into low (0.1-3.4 mg/m3), medium (3.4-11.7 mg/m3), 

and high (11.7-22.8 mg/m3) and odds ratio (OD) for COPD were calculated for each group. The OD for 

medium and high exposure groups were significantly elevated i.e. 3.9 and 3.8 respectively as compared with 

low exposure group. The overall average exposure for an average of 15 years exposure was 7.7 mg/m3- 

years which equates to an average welding fume exposure level of 0.5 mg/m3.23 
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The wide range of welding fume exposure levels associated with different adverse health effects are 

summarized in the following table 1. 

 

Table 1 Welding fume exposure levels for different adverse health effects 

Study Health effect Exposure level (mg/m3) 
Cherrie & Levy (2020) Lung cancer 0.1 

Siew et al (2008) Lung cancer 0.1-10 

Pesch et al (2019) Lung cancer ≤ 1.8 

Sjogren et al (2022) IHD, COPD, Preterm and low 

weight birth 

0.1-3.2 

Lillenberg et al (2008) Asthma, Bronchitis, Wheeze 0.02-0.31 

Taj et al (2021) Cardiovascular disease 0.5-0.7 

Gilga et al (2020) Neurology protein changes 0.5 

Koh et al (2015) 

 COPD   

   0.4 mg 

 

COPD 0.4 

 

The studies are comprised of cohort and case control studies with large sample sizes from different 

industrial sectors encompassing different welding techniques and materials. These studies do not mention if 

the measured welding fume levels are in respirable or inhalable size fractions. However, one can 

reasonably assume that they are in respirable size fraction since the major portion of a welding fume is in 

fine and ultrafine particulate size fraction. The particle size can be affected by the type of welding and the 

residual time, but the bulk of the particles would still be in the respirable size range.21 

 

The large sample sizes in the studies mentioned in table 1 show the level of rigor in determining an exposure 

level linked to an adverse health effect. Because of the robustness of the studies, one can be confident that if 

an exposure limit of 0.1 mg/m3 respirable dust is set the workers’ health will be protected from welding fumes 

for respiratory, cardiovascular, and carcinogenic effect. However, it should be noted that a dose-response 

relationship between welding fume exposure and lung cancer has not been established, therefore, the 

suggested exposure limit should be used with caution. Perhaps a risk assessment should be carried out before 

welding and the risk of exposure and welding constituents should be characterized. In case where a carcinogen 

is present in the fumes, for instance hexavalent chromium and nickel in stainless steel welding, the 

carcinogen’s specific TLV® should be used to lower the exposure. 

 

Beryllium which is also a carcinogen is present as an alloy in different metals and, therefore, can be present in 

the welding fume as one of the constituents. It is found in different industries such as automotive, construction, 

electronics, aerospace, and defense. Although beryllium is present in the alloy or welding rod in a low 

concentration (as low as 0.0008%) but it can still be present in high concentration in the welding fume (> 2 

µg/m3).22 

 

Conclusions 

 

In summary, OHCOW recommends a TLV®-TWA of 0.1 mg/m3 respirable dust for welding fumes in 

general with the exception of stainless steel and beryllium exposure. Current ACGIH TLV®s for 
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hexavalent chromium and nickel should be used to control the welding fumes from stainless steel welding. 

Similarly, the current ACGIH TLV® for beryllium should be instituted when beryllium is suspected in the 

welding fumes. 
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