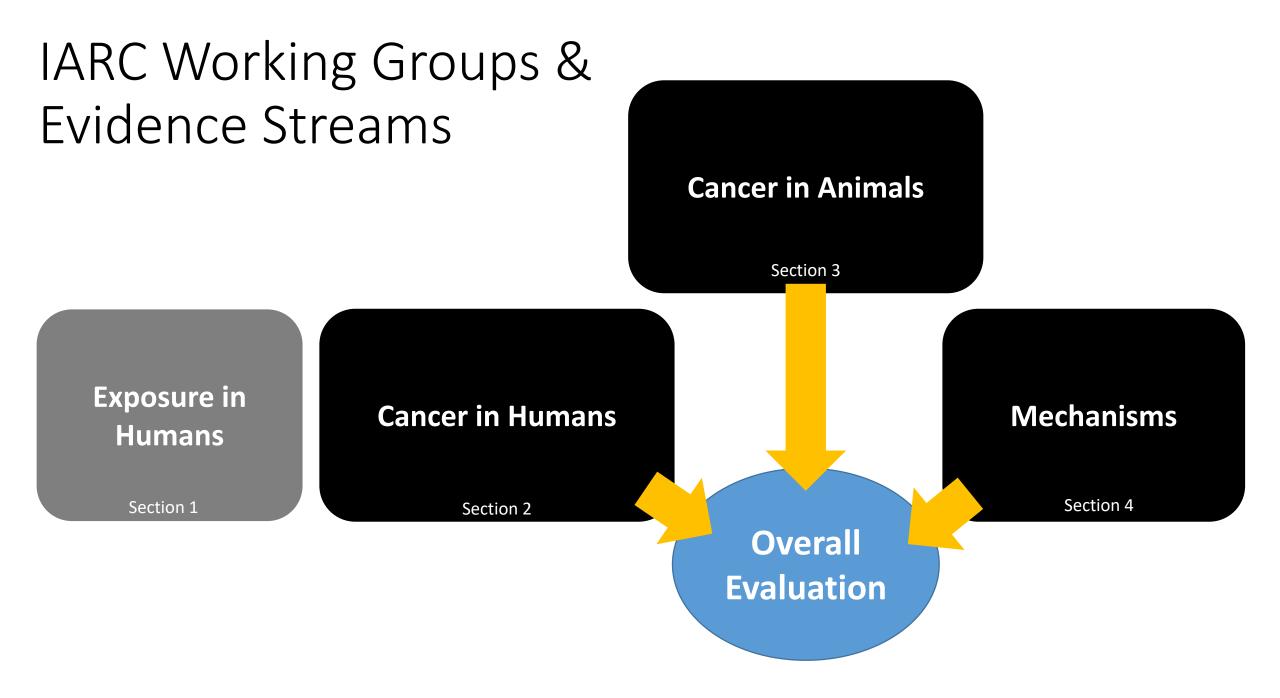
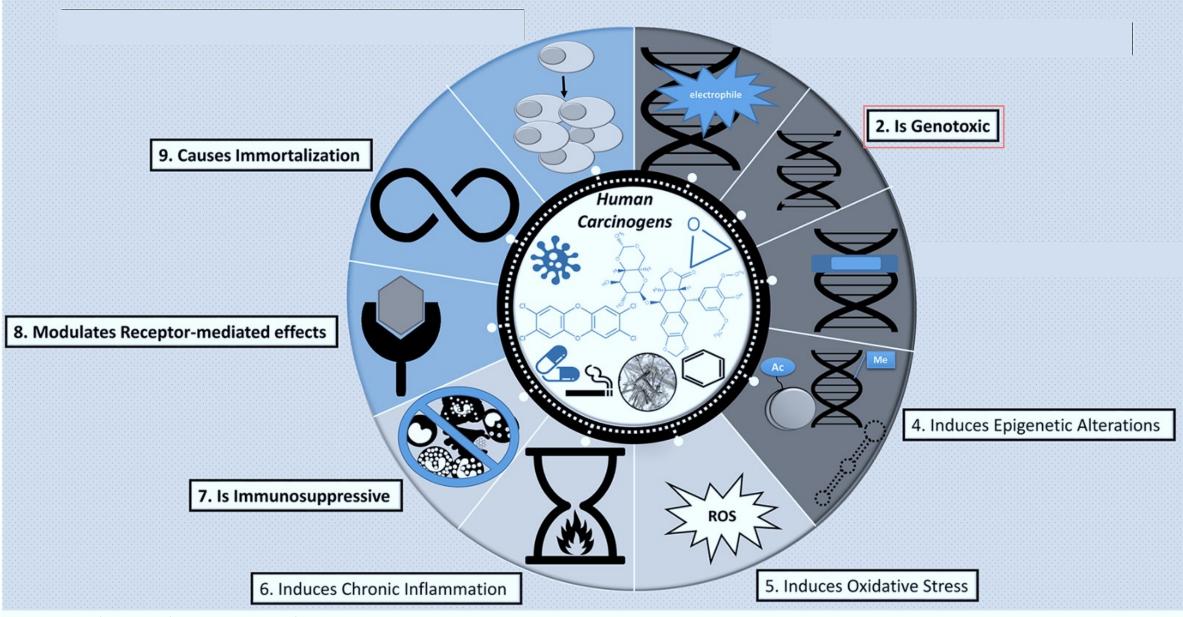


IARC Mechanistic Genetic Toxicity Evidence for Cancer in Firefighters


Alexandra Long, Ph.D

**Emerging Approaches Unit** 



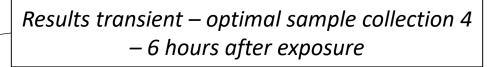

ESRAB Exchange

November 17, 2022



#### THE KEY CHARACTERISTICS OF HUMAN CARCINOGENS




Guyton et al. 2018. Chem. Res. Toxicol 31: 1290 – 1292.

### Genetic Toxicity

Different assays detect different stages of genetic toxicity

# Genetox for human studies?

- Genetic damage assays
  - Comet assay
  - DNA adducts
- Clastogenicity/aneugenicity
  - Micronucleus Assay
- Mutations
  - Ames/Salmonella assay




Results can be repaired but can be detectable days/weeks/months later



CT

TĞĞ

Ğ



### Urinary mutagenicity using Ames/Salmonella Assay

Urine sample collection timing dependent on excretion kinetics – i.e., the timing of when the chemicals come out in urine (usually sample within 24 hours). Depending on shift length may need to start collecting immediately following shift.

## Mechanistic Data

## **Study Types (systems)**

Most relevent

- Exposed humans
- Human cells
- Experimental systems
  - Animals
  - Non-human mammalian cells
  - Bacterial cells

Least relevent

#### <u>Pre/post sampling – firefighters served as own</u> <u>controls:</u>

- On-shift studies involving fire event
- Training course

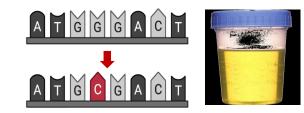
#### <u>Cross-sectional – firefighters vs. non-firefighter</u> <u>control:</u>

- Firefighters sampled following fire event vs control
- Firefighter (no specific exposure event) vs control

#### **Structure Fire**

#### **Urinary Mutagenicity**

- Canadian municipal firefighter study (Ottawa fire service)
- Samples collected pre & post on shift fire suppression events (31 samples from 16 non-smoking firefighters)
- Also included an unexposed control group (17 office workers)
- Did not consume charbroiled food & were not exposed to non-occupational combustion sources throughout the study
- Exposure assessment: personal air monitors, dermal wipes, urine metabolites

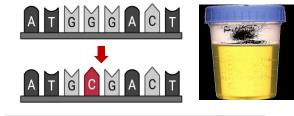



Article pubs.acs.org/est

Elevated Exposures to Polycyclic Aromatic Hydrocarbons and Other Organic Mutagens in Ottawa Firefighters Participating in Emergency, On-Shift Fire Suppression

Jennifer L. A. Keir,<sup>†</sup> Umme S. Akhtar,<sup>†</sup> David M. J. Matschke,<sup>‡</sup> Tracy L. Kirkham,<sup>§</sup> Hing Man Chan,<sup>†</sup> Pierre Ayotte,<sup>⊥</sup> Paul A. White,<sup>\*,†,||</sup> and Jules M. Blais<sup>\*,†©</sup>

Keir et al. (2017) Environ Sci Technol 51(21): 12745-55








#### **<u>Structure Fire</u>** Urinary Mutagenicity





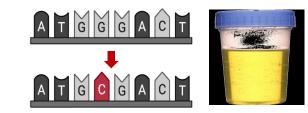




Keir et al. (2017) Environ Sci Technol 51(21): 12745-55

#### Wildland Fire (prescribed burns)

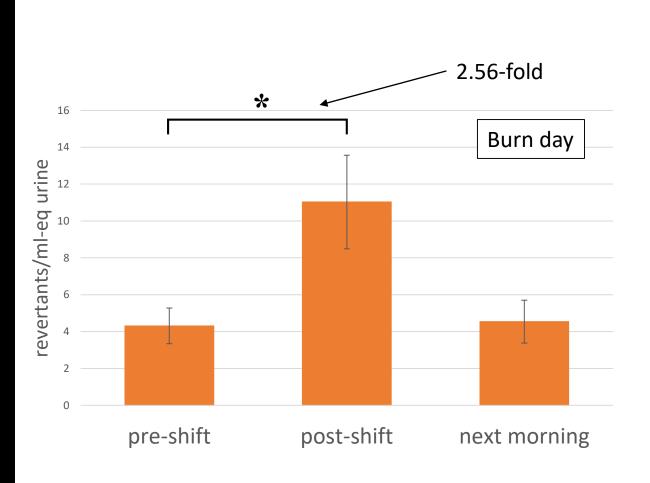
#### **Urinary Mutagenicity**


- American study, wildland firefighters
- Samples collected around both prescribed burn (burn day) and regular (non-burn day) work shifts:
  - Immediately before
  - Immediately after
  - Morning following
- 19 firefighters
- Exposure assessment: Air monitors for PM<sub>2.5</sub>

#### Original research

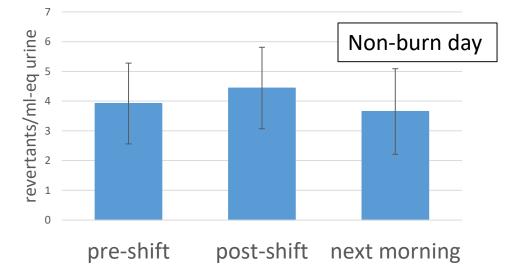
Urinary mutagenicity and oxidative status of wildland firefighters working at prescribed burns in a Midwestern US forest

Chieh-Ming Wu,<sup>1</sup> Sarah H Warren,<sup>2</sup> David M DeMarini,<sup>2</sup> Chi (Chuck) Song,<sup>3</sup> Olorunfemi Adetona <sup>1</sup>


Wu et al. (2020) Occup Environ Med 78(5): 315-322



Workplace


#### **Wildland Fire (prescribed burns)**

**Urinary Mutagenicity** 



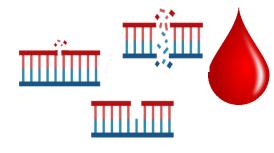
### ATGCCACT ATGCCACT

 Cross-shift changes in urinary mutagenicity significantly associated with length of smoke exposure (p = 0.01)

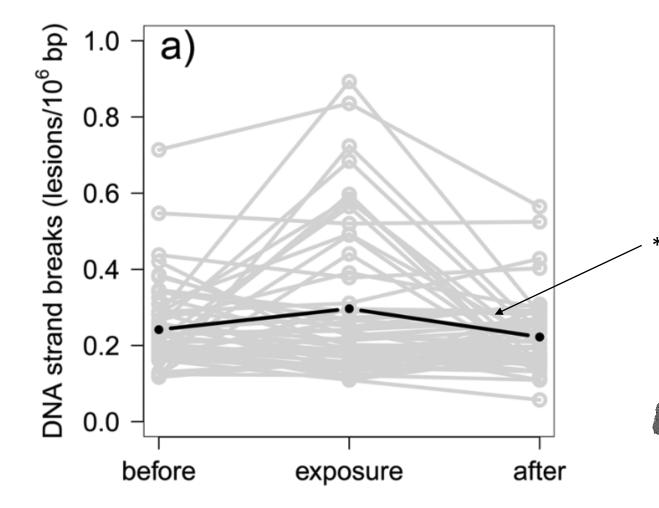


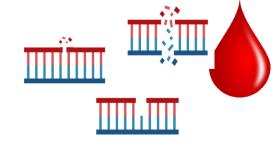
Wu et al. (2020) Occup Environ Med 78(5): 315-322

#### **Structure Fire**

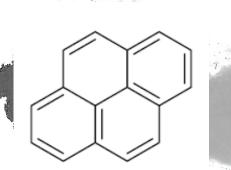

#### Comet assay - blood

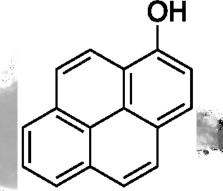
- Denmark, 9-month firefighter training course
- Samples collected around a 3-day course involving fire extinction exercises
  - 14-day before
  - immediately after
  - 14-days after
- 12 female & 41 male non-smoking firefighters
- Exposure assessment: dermal wipes, urine metabolites -> compounds in combustion emissions


Andersen et al. (2018) Mutagenesis 33(1): 105-115


#### Association between polycyclic aromatic hydrocarbon exposure and peripheral blood mononuclear cell DNA damage in human volunteers during fire extinction exercises

Maria Helena Guerra Andersen, Anne Thoustrup Saber,<sup>1</sup> Per Axel Clausen,<sup>1</sup> Julie Elbæk Pedersen,<sup>1</sup> Mille Løhr, Ali Kermanizadeh, Steffen Loft, Niels Ebbehøj,<sup>2</sup> Åse Marie Hansen,<sup>1,3</sup> Peter Bøgh Pedersen,<sup>4</sup> Ismo Kalevi Koponen,<sup>1</sup> Eva-Carina Nørskov,<sup>4</sup> Peter Møller\* and Ulla Vogel<sup>1,5,\*</sup>





#### **Structure Fire**





- DNA damage frequency +ve correlated with:
  - Skin total polycyclic aromatic hydrocarbon concentration (p<0.001)</li>
  - Skin pyrene concentration (p<0.001)
  - urinary 1-hydroxypyrene concentration (p<0.001)</li>



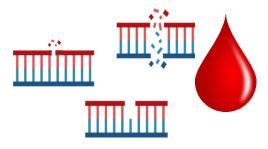


pyrene 1-hydroxypyrene (polycyclic aromatic hydrocarbons)

Andersen et al. (2018) Mutagenesis 33(1): 105-115

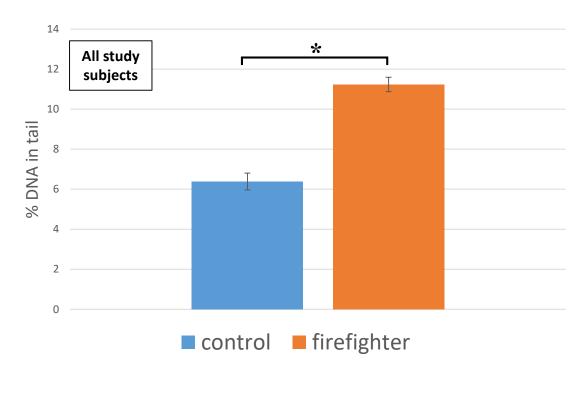
#### **Employment as a firefighter (Wildland Fires)**

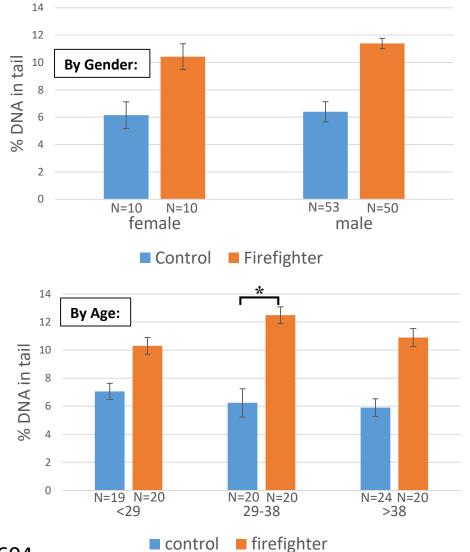
#### **Comet Assay - PBMC**


- Portuguese study of wildland firefighters
- No specific exposure event Cross-sectional study, samples collected from:
  - 60 volunteer wildland firefighter (>1 year experience)
  - 63 office-worker controls
- Samples matched by age, gender, smoking habits
- PPE use not recorded

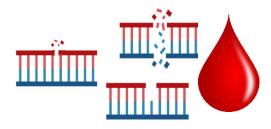
ISSN: 1528-7394 (Print) 1087-2620 (Online) Journal homepage: http://www.tandfonline.com/loi/uteh20

### Wood smoke exposure of Portuguese wildland firefighters: DNA and oxidative damage evaluation


Ana Abreu, Carla Costa, Susana Pinho e Silva, Simone Morais, Maria do Carmo Pereira, Adília Fernandes, Vanessa Moraes de Andrade, João Paulo Teixeira & Solange Costa


Abreu et al. (2017) J Toxicol and Env Health Pt A, 80: 13-15, 596-604.






#### **Comet Assay - blood**





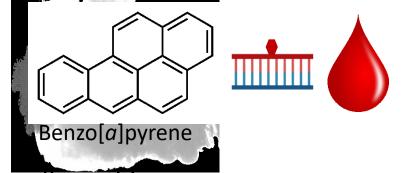
Abreu et al. (2017) J Toxicol and Env Health Pt A, 80: 13-15, 596-604.



Liou 1989

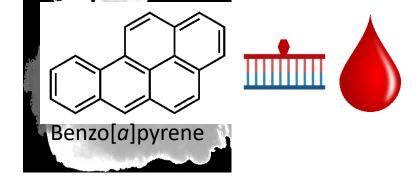
#### **Employment as a firefighter (Municipal firefighters)**

DNA adducts (polycyclic aromatic hydrocarbons) - blood


- American study of municipal firefighters
- No specific exposure event Cross-sectional study, samples collected from:
  - 43 male municipal firefighters
  - 40 male controls
- Samples matched by age & smoking status

[CANCER RESEARCH 49, 4929-4935, September 1, 1989]

#### Biological Monitoring of Fire Fighters: Sister Chromatid Exchange and Polycyclic Aromatic Hydrocarbon-DNA Adducts in Peripheral Blood Cells<sup>1</sup>


Saou-Hsing Liou,<sup>2</sup> David Jacobson-Kram, Miriam C. Poirier, Dung Nguyen, Paul T. Strickland, and Melvyn S. Tockman

Division of Occupational Medicine, Department of Environmental Health Sciences, Johns Hopkins University School of Hygiene and Public Health [S-H. L., P. T. S., M. S. T.], and Radiobiology Laboratory, Johns Hopkins University Oncology Center [D. J-K.], Baltimore Maryland 21205, and Laboratory of Cellular Carcinogenesis and Tumor Promotion, National Cancer Institute, NIH, Bethesda, Maryland 20892 [M. C. P., D. N.]



#### **Employment as a firefighter (Municipal firefighters)**

DNA adducts (polycyclic aromatic hydrocarbons) - blood



| Adjustment parameter                    | Odds ratio<br>(increased risk<br>for detectable<br>adducts) | Confidence<br>interval (95%) |
|-----------------------------------------|-------------------------------------------------------------|------------------------------|
| Crude data $(n = 43)$                   | 1.03                                                        | 0.41-2.58                    |
| Charcoal-broiled food (CBF)<br>(n = 29) | 1.73                                                        | 0.60-4.99                    |
| Smoking $(n = 17) + CBF$                | 1.67                                                        | 0.57-4.89                    |
| White race $(n = 37) + CBF$             | 3.36*                                                       | 1.08-10.5                    |
| Nonwhite race $(n = 6) + CBF$           | 0.13                                                        | 0.01-1.91                    |
| Daily alcohol $(n = 8) + CBF$           | 6.25                                                        | 0.56-69.5                    |

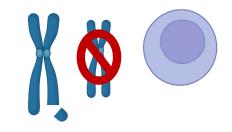
 Table 7 Odds ratio of fire fighting for BPDE-DNA antigenicity<sup>a</sup>

"Unadjusted and Mantel-Haenzel adjusted.

 $^{b}P = 0.04.$ 

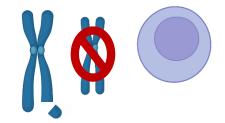
#### **Employment as a firefighter (Municipal firefighters)**

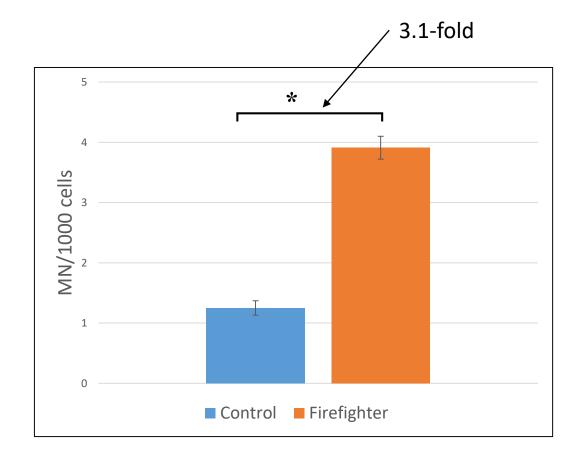
#### Micronucleus – exfoliated buccal epithelial cells (mouth)


- Indian study of municipal firefighters
- No specific exposure event Cross-sectional study, samples collected from:
  - 47 male municipal firefighters with >10 years of service
  - 40 male office worker controls
- Samples matched for age, ethnicity, smoking status, alcohol consumption +

#### Micronucleus Frequencies and Nuclear Anomalies in Exfoliated Buccal Epithelial Cells of Firefighters

Manas Ranjan Ray<sup>1</sup>, Chandreyi Basu<sup>2</sup>, Senjuti Mukherjee<sup>2</sup>, Sanghita Roychowdhury<sup>2</sup> and Twisha Lahiri<sup>2</sup>


1. Experimental Hematology Unit and 2. Department of Neuroendocrinology, Chittaranjan National Cancer Institute, 37, S. P. Mukherjee Road, Kolkata 700 026, West Bengal, India


Ray et al. (2005) Int J Hum Genet 5(1):45-48.



#### **Employment as a firefighter (Municipal firefighters)**

Micronucleus – exfoliated buccal epithelial cells (mouth)





Ray et al. (2005) Int J Hum Genet 5(1):45-48.

# IARC Monograph 132 Infographic



# Impact of mechanistic data to final classification

| Classification | Cancer in<br>Humans | Cancer in<br>experimental<br>animals | Mechanistic Evidence |        |                   |
|----------------|---------------------|--------------------------------------|----------------------|--------|-------------------|
| Group 1        | Sufficient          |                                      | Strong               | ]      | Need 1 in exposed |
| (carcinogenic) |                     |                                      |                      | humans |                   |

н.

# Thank you!



#### Lancet Oncol 2022

Published Online June 30, 2022 https://doi.org/10.1016/ \$1470-2045(22)00390-4

#### Carcinogenicity of occupational exposure as a firefighter