

Using Infectious Dose to Understand Risk

Lisa M Brosseau, ScD, CIH

Professor (retired)

Research Consultant, University of Minnesota Center for Infectious Disease Research and Policy

What About Dose?

- For SARS, highest risk of infection occurred during aerosol-generating medical procedures
- COVID-19 shows higher attack rates in indoor clusters
- Suggests that SARS and COVID-19 infections may be related to dose
 - Concentration & Time

Aerosol Transmission = Inhalation of Infectious Particles

- The probability of getting infected depends on inhaling an "infectious dose" = the number of virions needed to make infection likely
 - Function of where particles land in the lung
 - Likelihood of deposition
- Infectious dose does not necessarily imply illness (symptoms and disease)
- Don't know infectious dose for COVID-19, but might estimate 1000 virions by analogy to influenza and other coronaviruses

Infectious Dose

- Viral load (RNA copies per mL) in sputum = viral load in particles emitted during breathing, talking, coughing, sneezing, etc.
- Viral emission rate is a function of:
 - Viral load in sputum
 - Volume of air exhaled per breath
 - Breathing rate
 - Number of particles emitted per breath
 - Volume of a particle (function of particle diameter)

STEADY STATE CONCENTRATION

Steady state concentration of infectious virus in the air (C, virions/m³) is a function of*

- Generation rate of virions by infectious person (G, virions/min)
- Ventilation rate (Q, m³/min)

$$C = G/Q$$

Person infected with SARS-CoV-2 generates 1000 virions/nL saliva.**

Human Activity Volume of Saliva

virions/min (G)

_		· · · · · · · · · · · · · · · · · · ·
Sneeze	1 µL (1000 nL)	$10^6 (1 \text{ sneeze/min} = 1,001,000/\text{min})$
Cough	100 nL	$10^5 (1 \text{ cough/min} = 101,000/\text{min})$
Talking	10 nL/min	104
Breathing	l nL/min	10 ³

^{*}Hewett, Paul, and Gary H. Ganser. "Models for nearly every occasion: Part I-One box models." Journal of occupational and environmental hygiene 14.1 (2017): 49-57.

^{**} Evans, Matthew. "Avoiding COVID-19: Aerosol Guidelines." arXiv preprint arXiv:2005.10988 (2020).

STEADY STATE CONCENTRATION

Ventilation rate (Q, m³/hr) is function of:*

- Number of Air Changes per Hour (ACH) (n)
- Volume of the room (V, m³)

$$Q = nV$$

Example Room volume (V) = 300 m^3 and ACH = $5 \text{ Q} = 1500 \text{ m}^3/\text{hr}$ or $26 \text{ m}^3/\text{min}$

*Hewett, Paul, and Gary H. Ganser. "Models for nearly every occasion: Part I-One box models." Journal of occupational and environmental hygiene 14.1 (2017): 49-57.

EXAMPLE — HOTEL ROOM

What's the concentration in a 300 m³ hotel room with 5 ACH if an infectious guest stays overnight (12 hrs)?

Assume mostly breathing (90%), some talking (10%) & periodic coughing (1/hr).

Activity	Calculation	G (virions/min)
Breathing	0.9 x 10 ³ virions/min	900
Talking	0.1 x 10 ⁴ virions/min	1000
l cough/hr	10 ⁵ /hr x (hr/60 min)	1667
Overall		3567

$$C = G/Q = 3567 \text{ virions/min} \div 26 \text{ m}^3/\text{min} = 137 \text{ virions/m}^3$$

HOW LONG TO WAIT FOR ROOM TO CLEAR?

Time to wait for a room to clear is a function of the room volume, ventilation rate, and initial concentration:

$$t_2 = -\frac{V}{Q} \ln(\frac{c_2}{c_1})$$

Example: If we want the concentration to be no more than 0.1 virions/m^3 (c₂), then the wait time is:

$$-\frac{300 \, m^3}{26 \, m^3/min} \ln(\frac{0.1 \, virions/m^3}{137 \, virions/m^3}) = 84 \, \min$$

TABLE 1. Air changes per hour (ACH) and time required for removal efficiencies of 99% and 99.9% of airborne contaminants*

	Minutes required for removal efficiency [†]		
ACH	99%	99.9%	
2	138	207	
4	69	104	
6	46	69	
12	23	35	
15	18	28	
20	14	21	
50	6	8	
400	<1	1	

Centers for Disease Control and Prevention. Guidelines for Preventing the Transmission of Mycobacterium tuberculosis

in Health-Care Settings, 2005. MMWR 2005;54(No. RR-17)

MIXING FACTOR

- The well-mixed box model assumes perfect mixing, which may not always be the case
- Some guidelines suggest using a mixing factor (m) to adjust the ventilation rate (Q) where m could range from 0 (no mixing) to 1 (perfect mixing)

$$C = \frac{G}{mQ}$$

- Typically, values for m range from 0.1 to 0.5
- Not entirely correct to use a mixing factor, because it violates the mass balance principle. Not used much in modeling.

WHAT'S THE EXPOSURE?

- What if one person in the room is infectious and the other is not?
- Steady state concentration = 137 virions/m³
- Dose (D) is a function of concentration (C), breathing rate (Q_{BR}) and time (t):

$$D = CQ_{BR}t$$

Someone sharing the room with this person, for 12 hours, breathing at a rate of 10 L/min (0.01 m³/min) will have a dose of 986 virions.

PROBABILITY OF INFECTION

Infectious Dose

Estimate the probability of infection*

$$P(infection) = 1 - \exp(-\frac{D}{D_{infectious}})$$

D_{infectious} = infectious dose = 1000 virions (estimated; not known for SARS-CoV-2)

A dose of 986 virions has a 62% chance of leading to an infection

^{*} Evans, Matthew. "Avoiding COVID-19: Aerosol Guidelines." arXiv preprint arXiv:2005.10988 (2020).

INTERVENTIONS

- Source controls:
 - Limit the number of people staying in a room
 - Screen guests
- Pathway controls:
 - Increase HVAC ventilation rate (ACH) to decrease wait time [not always possible]
 - Add a portable air cleaner to the room to increase ventilation rate & decrease wait time [should have a high-efficiency filter]
 - Limit the amount of time a worker spends in a room
 - Limit the number of rooms cleaned